Standard

19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange. / Chukanov, Nikita V.; Salnikov, Oleg G.; Shchepin, Roman V. et al.

In: Journal of Physical Chemistry C, Vol. 122, No. 40, 11.10.2018, p. 23002-23010.

Research output: Contribution to journalArticlepeer-review

Harvard

Chukanov, NV, Salnikov, OG, Shchepin, RV, Svyatova, A, Kovtunov, KV, Koptyug, IV & Chekmenev, EY 2018, '19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange', Journal of Physical Chemistry C, vol. 122, no. 40, pp. 23002-23010. https://doi.org/10.1021/acs.jpcc.8b06654

APA

Chukanov, N. V., Salnikov, O. G., Shchepin, R. V., Svyatova, A., Kovtunov, K. V., Koptyug, I. V., & Chekmenev, E. Y. (2018). 19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange. Journal of Physical Chemistry C, 122(40), 23002-23010. https://doi.org/10.1021/acs.jpcc.8b06654

Vancouver

Chukanov NV, Salnikov OG, Shchepin RV, Svyatova A, Kovtunov KV, Koptyug IV et al. 19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange. Journal of Physical Chemistry C. 2018 Oct 11;122(40):23002-23010. doi: 10.1021/acs.jpcc.8b06654

Author

Chukanov, Nikita V. ; Salnikov, Oleg G. ; Shchepin, Roman V. et al. / 19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange. In: Journal of Physical Chemistry C. 2018 ; Vol. 122, No. 40. pp. 23002-23010.

BibTeX

@article{f0fee9ba230848b2aaa4764d7e3356ae,
title = "19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange",
abstract = "We report synthesis of 15N-3-19F-pyridine via Zincke salt formation with overall 35% yield and 84% 15N isotopic purity. Hyperpolarization studies of signal amplification by reversible exchange (SABRE) and SABRE in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) were performed to investigate the mechanism of polarization transfer from parahydrogen-derived hydride protons to 19F nucleus in millitesla and microtesla magnetic-field regimes in 15N-3-19F-pyridine and 14N-3-19F-pyridine. We found the mismatch between 15N and 19F magnetic-field hyperpolarization profiles in the microtesla regime indicating that the spontaneous hyperpolarization process likely happens directly from parahydrogen-derived hydride protons to 19F nucleus without spin-relaying via 15N site. In the case of SABRE magnetic-field regime (millitesla magnetic-field range), we found that magnetic-field profiles for 1H and 19F hyperpolarization are very similar and 19F polarization levels are significantly lower than 1H SABRE polarization levels and lower than 19F SABRE-SHEATH (i.e., obtained at microtesla magnetic field) polarization levels. Our findings support the hypothesis that in millitesla magnetic-field regime, the process of 19F nuclei hyperpolarization is relayed via protons of the substrate and therefore is very inefficient. These findings are important in the context of improvement of the hyperpolarization hardware and rational design of the hyperpolarized molecular probes.",
keywords = "PARAHYDROGEN-INDUCED POLARIZATION, MAGNETIC-RESONANCE, N-15 HYPERPOLARIZATION, PARA-HYDROGEN, SABRE, METRONIDAZOLE, PYRIDINE, MRI, SPECTROSCOPY, NICOTINAMIDE",
author = "Chukanov, {Nikita V.} and Salnikov, {Oleg G.} and Shchepin, {Roman V.} and Alexandra Svyatova and Kovtunov, {Kirill V.} and Koptyug, {Igor V.} and Chekmenev, {Eduard Y.}",
year = "2018",
month = oct,
day = "11",
doi = "10.1021/acs.jpcc.8b06654",
language = "English",
volume = "122",
pages = "23002--23010",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "40",

}

RIS

TY - JOUR

T1 - 19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange

AU - Chukanov, Nikita V.

AU - Salnikov, Oleg G.

AU - Shchepin, Roman V.

AU - Svyatova, Alexandra

AU - Kovtunov, Kirill V.

AU - Koptyug, Igor V.

AU - Chekmenev, Eduard Y.

PY - 2018/10/11

Y1 - 2018/10/11

N2 - We report synthesis of 15N-3-19F-pyridine via Zincke salt formation with overall 35% yield and 84% 15N isotopic purity. Hyperpolarization studies of signal amplification by reversible exchange (SABRE) and SABRE in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) were performed to investigate the mechanism of polarization transfer from parahydrogen-derived hydride protons to 19F nucleus in millitesla and microtesla magnetic-field regimes in 15N-3-19F-pyridine and 14N-3-19F-pyridine. We found the mismatch between 15N and 19F magnetic-field hyperpolarization profiles in the microtesla regime indicating that the spontaneous hyperpolarization process likely happens directly from parahydrogen-derived hydride protons to 19F nucleus without spin-relaying via 15N site. In the case of SABRE magnetic-field regime (millitesla magnetic-field range), we found that magnetic-field profiles for 1H and 19F hyperpolarization are very similar and 19F polarization levels are significantly lower than 1H SABRE polarization levels and lower than 19F SABRE-SHEATH (i.e., obtained at microtesla magnetic field) polarization levels. Our findings support the hypothesis that in millitesla magnetic-field regime, the process of 19F nuclei hyperpolarization is relayed via protons of the substrate and therefore is very inefficient. These findings are important in the context of improvement of the hyperpolarization hardware and rational design of the hyperpolarized molecular probes.

AB - We report synthesis of 15N-3-19F-pyridine via Zincke salt formation with overall 35% yield and 84% 15N isotopic purity. Hyperpolarization studies of signal amplification by reversible exchange (SABRE) and SABRE in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) were performed to investigate the mechanism of polarization transfer from parahydrogen-derived hydride protons to 19F nucleus in millitesla and microtesla magnetic-field regimes in 15N-3-19F-pyridine and 14N-3-19F-pyridine. We found the mismatch between 15N and 19F magnetic-field hyperpolarization profiles in the microtesla regime indicating that the spontaneous hyperpolarization process likely happens directly from parahydrogen-derived hydride protons to 19F nucleus without spin-relaying via 15N site. In the case of SABRE magnetic-field regime (millitesla magnetic-field range), we found that magnetic-field profiles for 1H and 19F hyperpolarization are very similar and 19F polarization levels are significantly lower than 1H SABRE polarization levels and lower than 19F SABRE-SHEATH (i.e., obtained at microtesla magnetic field) polarization levels. Our findings support the hypothesis that in millitesla magnetic-field regime, the process of 19F nuclei hyperpolarization is relayed via protons of the substrate and therefore is very inefficient. These findings are important in the context of improvement of the hyperpolarization hardware and rational design of the hyperpolarized molecular probes.

KW - PARAHYDROGEN-INDUCED POLARIZATION

KW - MAGNETIC-RESONANCE

KW - N-15 HYPERPOLARIZATION

KW - PARA-HYDROGEN

KW - SABRE

KW - METRONIDAZOLE

KW - PYRIDINE

KW - MRI

KW - SPECTROSCOPY

KW - NICOTINAMIDE

UR - http://www.scopus.com/inward/record.url?scp=85054408878&partnerID=8YFLogxK

U2 - 10.1021/acs.jpcc.8b06654

DO - 10.1021/acs.jpcc.8b06654

M3 - Article

C2 - 31435456

AN - SCOPUS:85054408878

VL - 122

SP - 23002

EP - 23010

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 40

ER -

ID: 17035528