Research output: Contribution to journal › Article › peer-review
Локальные теоремы для конечномерных приращений арифметических многомерных обобщенных процессов восстановления при выполнении условия Крамера. / Logachov, Artem Vasilhevich; Mogulskii, Anatolii Alfredovich.
In: Сибирские электронные математические известия, Vol. 17, 2020, p. 1766-1786.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Локальные теоремы для конечномерных приращений арифметических многомерных обобщенных процессов восстановления при выполнении условия Крамера
AU - Logachov, Artem Vasilhevich
AU - Mogulskii, Anatolii Alfredovich
PY - 2020
Y1 - 2020
N2 - We continue to study the compound renewal processes under the Cramer moment condition, which was started by A.A. Borovkov and A.A. Mogulskii (2013). In the present paper we study arithmetic multidimensional compound renewal process, for which the "controlling" random vector xi = (tau, zeta) (tau > 0 determines the distance between the jumps, zeta determines the value of jumps of the compound renewal process) has an arithmetic distribution with light tails. For these processes we propose wide conditions (close to necessary), under which we can find exact asymptotics in local limit theorems for finite - dimensional increments.
AB - We continue to study the compound renewal processes under the Cramer moment condition, which was started by A.A. Borovkov and A.A. Mogulskii (2013). In the present paper we study arithmetic multidimensional compound renewal process, for which the "controlling" random vector xi = (tau, zeta) (tau > 0 determines the distance between the jumps, zeta determines the value of jumps of the compound renewal process) has an arithmetic distribution with light tails. For these processes we propose wide conditions (close to necessary), under which we can find exact asymptotics in local limit theorems for finite - dimensional increments.
KW - compound multidimensional arithmetic renewal process
KW - large deviations
KW - moderate deviations
KW - renewal measure
KW - Cramer's condition
KW - rate function
KW - local theorems for finite - dimensional increments
KW - LARGE DEVIATION PRINCIPLES
KW - DISTRIBUTIONS
KW - TRAJECTORIES
KW - BOUNDARY
U2 - 10.33048/semi.2020.17.120
DO - 10.33048/semi.2020.17.120
M3 - статья
VL - 17
SP - 1766
EP - 1786
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 26076714