Research output: Contribution to journal › Article › peer-review
Разрешимость краевой задачи о хаотичной динамике полимерной молекулы в случае ограниченного потенциала взаимодействия. / Starovoitov, Victor N.
In: Siberian Electronic Mathematical Reports, Vol. 18, No. 2, 63, 2021, p. 1714-1719.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Разрешимость краевой задачи о хаотичной динамике полимерной молекулы в случае ограниченного потенциала взаимодействия
AU - Starovoitov, Victor N.
N1 - Старовойтов В.Н. Разрешимость краевой задачи о хаотичной динамике полимерной молекулы в случае ограниченного потенциала взаимодействия // Сибирские электронные математические известия. – 2021. – Т. 18. – № 2. – С. 1714-1719.
PY - 2021
Y1 - 2021
N2 - This paper deals with a boundary value problem for a parabolic,differential equation that describes a chaotic motion of a polymer,chain in water. The equation is nonlocal in time as well as in space. It,includes a so called interaction potential that depends on the integrals,of the solution over the entire time interval and over the space domain,where the problem is being solved. The time nonlocality appears since,the time plays the role of the arc length along the chain and each,segment interacts with all others through the surrounding fluid. The,weak solvability of the problem is proven for the case of the bounded,continuous interaction potential. The proof of the solvability does not,use any continuity properties of the solution with respect to the time,and is based on the energy estimate only
AB - This paper deals with a boundary value problem for a parabolic,differential equation that describes a chaotic motion of a polymer,chain in water. The equation is nonlocal in time as well as in space. It,includes a so called interaction potential that depends on the integrals,of the solution over the entire time interval and over the space domain,where the problem is being solved. The time nonlocality appears since,the time plays the role of the arc length along the chain and each,segment interacts with all others through the surrounding fluid. The,weak solvability of the problem is proven for the case of the bounded,continuous interaction potential. The proof of the solvability does not,use any continuity properties of the solution with respect to the time,and is based on the energy estimate only
KW - Initial boundary value problem
KW - Nonlocal parabolic equation
KW - Solvability
UR - http://www.scopus.com/inward/record.url?scp=85124143016&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=47669605
U2 - 10.33048/SEMI.2021.18.131
DO - 10.33048/SEMI.2021.18.131
M3 - статья
AN - SCOPUS:85124143016
VL - 18
SP - 1714
EP - 1719
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 2
M1 - 63
ER -
ID: 35455106