Research output: Contribution to journal › Article › peer-review
Асимптотический анализ задачи о сопряжении включений Бернулли-Эйлера и Тимошенко в упругом теле. / Fankina, Irina Vladimirovna.
In: Siberian Electronic Mathematical Reports, Vol. 22, No. 1, 2025, p. 326-342.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Асимптотический анализ задачи о сопряжении включений Бернулли-Эйлера и Тимошенко в упругом теле
AU - Fankina, Irina Vladimirovna
N1 - Фанкина И.В. Асимптотический анализ задачи о сопряжении включений Бернулли - Эйлера и Тимошенко в упругом теле // Сибирский электронный математический журнал. - 2025. - Т. 22. - № 1. - С. 326-342. DOI 10.33048/semi.2025.22.022 Работа выполнена при поддержке Математического Центра в Академгородке, соглашение № 075-15-2022-282 с Министерством науки и высшего образования Российской Федерации.
PY - 2025
Y1 - 2025
N2 - We consider the equilibrium problem for a 2D elastic body with two thin elastic inclusions with a junction at a point. It is assumed that a crack exists between the inclusions and the body. Inequality-type boundary conditions are imposed at the crack faces to prevent mutual penetration. The problem depends on rigidity parameter of one of the inclusions: we are talking about family of problems. A weak convergence of solutions of the family of problems in suitable functional spaces is proved. By this convergence, we pass to the limit in the problems and establish the form of limit problem. Strong convergence of solutions of family of problems is also established. On its basis, the existence of a solution of the optimal control problem is proved. The optimal control problem is formulated in accordance with the Griffths failure criterion, the control parameter is the rigidity parameter of the inclusion.
AB - We consider the equilibrium problem for a 2D elastic body with two thin elastic inclusions with a junction at a point. It is assumed that a crack exists between the inclusions and the body. Inequality-type boundary conditions are imposed at the crack faces to prevent mutual penetration. The problem depends on rigidity parameter of one of the inclusions: we are talking about family of problems. A weak convergence of solutions of the family of problems in suitable functional spaces is proved. By this convergence, we pass to the limit in the problems and establish the form of limit problem. Strong convergence of solutions of family of problems is also established. On its basis, the existence of a solution of the optimal control problem is proved. The optimal control problem is formulated in accordance with the Griffths failure criterion, the control parameter is the rigidity parameter of the inclusion.
KW - crack
KW - elastic body
KW - junction conditions
KW - non-penetration conditions
KW - optimal control
KW - rigidity parameter
KW - thin inclusion
KW - variational inequality
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105020401589&origin=inward
UR - https://www.mendeley.com/catalogue/8c42355b-6a2e-3727-8a75-8f833ecb9598/
U2 - 10.33048/semi.2025.22.022
DO - 10.33048/semi.2025.22.022
M3 - статья
VL - 22
SP - 326
EP - 342
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 1
ER -
ID: 71988499