Research output: Contribution to journal › Article › peer-review
О работах семинара по гиперболическим уравнениям под руководством С.К. Годунова. / Gordienko, Valerii M.
In: Сибирские электронные математические известия, Vol. 17, 029, 01.03.2020, p. A59-A67.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - О работах семинара по гиперболическим уравнениям под руководством С.К. Годунова
AU - Gordienko, Valerii M.
N1 - Гордиенко В.М. О работах семинара по гиперболическим уравнениям под руководством С.К. Годунова // Сибирские электронные математические известия. - 2020. - Т. 17. - С. 2274-2282
PY - 2020/3/1
Y1 - 2020/3/1
N2 - In the middle of 1970s at Novosibirsk State University the S. K. Godunov seminar on hyperbolic equations started its work. The article describes the works of the participants on hyperbolic equations. The main interest was concentrated around two problems. The first is the reduction of a high-order Petrovskii hyperbolic equation to a first-order Friedrichs hyperbolic symmetric system. The second probem is that if a boundary value problem is posed for a hyperbolic equation then it is required to reduce it to a symmetric system so that the posed boundary condition be dissipative.
AB - In the middle of 1970s at Novosibirsk State University the S. K. Godunov seminar on hyperbolic equations started its work. The article describes the works of the participants on hyperbolic equations. The main interest was concentrated around two problems. The first is the reduction of a high-order Petrovskii hyperbolic equation to a first-order Friedrichs hyperbolic symmetric system. The second probem is that if a boundary value problem is posed for a hyperbolic equation then it is required to reduce it to a symmetric system so that the posed boundary condition be dissipative.
KW - Dissipative boundary condition
KW - Mixed problem
KW - Symmetric hyperbolic system
KW - Wave equation
KW - distance-regular graph
KW - arc-transitive group
KW - affine 2-transitive group
KW - antipodal cover
KW - COVERS
KW - SUBGROUPS
UR - http://www.scopus.com/inward/record.url?scp=85086908115&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=44726659
U2 - 10.33048/SEMI.2020.17.051
DO - 10.33048/SEMI.2020.17.051
M3 - статья
AN - SCOPUS:85086908115
VL - 17
SP - A59-A67
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
M1 - 029
ER -
ID: 24615740