Research output: Contribution to journal › Article › peer-review
Об итерационном решении задачи Стокса. / Гурин, Алексей Михайлович; Ильин, Валерий Павлович; Козлов, Дмитрий Иванович et al.
In: Сибирские электронные математические известия, Vol. 22, No. 1, 2025, p. А102-А120.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Об итерационном решении задачи Стокса
AU - Гурин, Алексей Михайлович
AU - Ильин, Валерий Павлович
AU - Козлов, Дмитрий Иванович
AU - Кузьмин, Евгений Алексеевич
N1 - Об итерационном решении задачи Стокса / А. М. Гурин, В. П. Ильин, Д. И. Козлов, Е. А. Кузьмин // Сибирские электронные математические известия. – 2025. – Т. 22, № 1. – С. А102-А120. – DOI 10.33048/semi.2025.22.A08
PY - 2025
Y1 - 2025
N2 - Block preconditioned iterative conjugate gradient methods for solving the three-dimensional Stokes problem are investigated. A formulation with a computational domain in the form of a parallelepiped is considered. Standard approximations on a cubic staggered grid, seven-point and two-point for the Laplace and derivative operators are used. The resulting saddle-type SLAE is regularized to ensure the uniqueness of the solution. The block preconditioner is constructed by the method of incomplete factorization with diagonal compensation and using band approximations for matrices inverse to the Schur complement and the grid Laplace operator, as well as using an algebraic multigrid algorithm. Examples of numerical experiments on a representative series of methodological problems using parallel algorithms on di erent numbers of processors are given. The issues of generalizing the proposed approaches to broader classes of problems are considered.
AB - Block preconditioned iterative conjugate gradient methods for solving the three-dimensional Stokes problem are investigated. A formulation with a computational domain in the form of a parallelepiped is considered. Standard approximations on a cubic staggered grid, seven-point and two-point for the Laplace and derivative operators are used. The resulting saddle-type SLAE is regularized to ensure the uniqueness of the solution. The block preconditioner is constructed by the method of incomplete factorization with diagonal compensation and using band approximations for matrices inverse to the Schur complement and the grid Laplace operator, as well as using an algebraic multigrid algorithm. Examples of numerical experiments on a representative series of methodological problems using parallel algorithms on di erent numbers of processors are given. The issues of generalizing the proposed approaches to broader classes of problems are considered.
KW - :Stokes problem
KW - large sparse SLAEs
KW - iterative preconditioned methods
KW - Krylov subspace
KW - Schur complement
UR - https://math-semr.ru/sites/math-semr.ru/files/2025-08/A102-A120.pdf
U2 - 10.33048/semi.2025.22.A08
DO - 10.33048/semi.2025.22.A08
M3 - статья
VL - 22
SP - А102-А120
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 1
ER -
ID: 71568112