Standard

Гамильтонова связность графов диагональной решетки. / Prytkov, N. V.; Perezhogin, A. L.

In: Siberian Electronic Mathematical Reports, Vol. 16, 143, 2019, p. 2080-2089.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Prytkov NV, Perezhogin AL. Гамильтонова связность графов диагональной решетки. Siberian Electronic Mathematical Reports. 2019;16:2080-2089. 143. doi: 10.33048/semi.2019.16.147

Author

Prytkov, N. V. ; Perezhogin, A. L. / Гамильтонова связность графов диагональной решетки. In: Siberian Electronic Mathematical Reports. 2019 ; Vol. 16. pp. 2080-2089.

BibTeX

@article{07b556e3e000440f86b4491e2b93d5a4,
title = "Гамильтонова связность графов диагональной решетки",
abstract = "A graph G is called Hamiltonian connected graph if for every pair of distinct vertices u,v∈V(G) there exists a hamiltonian (u,v)-path in G. In this paper we prove Hamiltonian connectivity of the family of infinite two-dimensional diagonal grid induced subgraphs with added horizontal and vertical border edges. A generalization for multidimensional case is given. These results are applied to prove the existence of discrete dynamic systems with arbitrary control functions with some given functioning properties.",
keywords = "discrete dynamic system, grid graph, hamiltonian connectivity",
author = "Prytkov, {N. V.} and Perezhogin, {A. L.}",
note = "Прытков Н.В., Пережогин А.Л. Гамильтонова связность графов диагональной решетки // Сибирские электронные математические известия. - 2019. - Т. 16. - С. 2080-2089",
year = "2019",
doi = "10.33048/semi.2019.16.147",
language = "русский",
volume = "16",
pages = "2080--2089",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Гамильтонова связность графов диагональной решетки

AU - Prytkov, N. V.

AU - Perezhogin, A. L.

N1 - Прытков Н.В., Пережогин А.Л. Гамильтонова связность графов диагональной решетки // Сибирские электронные математические известия. - 2019. - Т. 16. - С. 2080-2089

PY - 2019

Y1 - 2019

N2 - A graph G is called Hamiltonian connected graph if for every pair of distinct vertices u,v∈V(G) there exists a hamiltonian (u,v)-path in G. In this paper we prove Hamiltonian connectivity of the family of infinite two-dimensional diagonal grid induced subgraphs with added horizontal and vertical border edges. A generalization for multidimensional case is given. These results are applied to prove the existence of discrete dynamic systems with arbitrary control functions with some given functioning properties.

AB - A graph G is called Hamiltonian connected graph if for every pair of distinct vertices u,v∈V(G) there exists a hamiltonian (u,v)-path in G. In this paper we prove Hamiltonian connectivity of the family of infinite two-dimensional diagonal grid induced subgraphs with added horizontal and vertical border edges. A generalization for multidimensional case is given. These results are applied to prove the existence of discrete dynamic systems with arbitrary control functions with some given functioning properties.

KW - discrete dynamic system

KW - grid graph

KW - hamiltonian connectivity

UR - http://www.scopus.com/inward/record.url?scp=85114879653&partnerID=8YFLogxK

UR - https://elibrary.ru/item.asp?id=42735189

U2 - 10.33048/semi.2019.16.147

DO - 10.33048/semi.2019.16.147

M3 - статья

AN - SCOPUS:85114879653

VL - 16

SP - 2080

EP - 2089

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

M1 - 143

ER -

ID: 34241272