Standard

Об ω-Независимых Базисах Квазитождеств. / Basheyeva, Aynur; Yakovlev, Andrew.

In: Siberian Electronic Mathematical Reports, Vol. 14, 2017, p. 838-847.

Research output: Contribution to journalArticlepeer-review

Harvard

Basheyeva, A & Yakovlev, A 2017, 'Об ω-Независимых Базисах Квазитождеств', Siberian Electronic Mathematical Reports, vol. 14, pp. 838-847. https://doi.org/10.17377/semi.2017.14.070

APA

Basheyeva, A., & Yakovlev, A. (2017). Об ω-Независимых Базисах Квазитождеств. Siberian Electronic Mathematical Reports, 14, 838-847. https://doi.org/10.17377/semi.2017.14.070

Vancouver

Basheyeva A, Yakovlev A. Об ω-Независимых Базисах Квазитождеств. Siberian Electronic Mathematical Reports. 2017;14:838-847. doi: 10.17377/semi.2017.14.070

Author

Basheyeva, Aynur ; Yakovlev, Andrew. / Об ω-Независимых Базисах Квазитождеств. In: Siberian Electronic Mathematical Reports. 2017 ; Vol. 14. pp. 838-847.

BibTeX

@article{30b9a63df49e439187c6176a1e8f193f,
title = "Об ω-Независимых Базисах Квазитождеств",
abstract = "In this article, we continue the study of complexity of quasivariety lattices. We prove that there are continuum many quasivarieties of graphs, monounary algebras, digraphs, and pointed Abelian groups having an ω-independet quasi-equational basis.",
keywords = "Quasi-equational basis, Quasivariety, ω-independent basis, Quasi-equational basis, Quasivariety, ω-independent basis",
author = "Aynur Basheyeva and Andrew Yakovlev",
note = "Башеева А.О., Яковлев А.В. Об ω-Независимых Базисах Квазитождеств // Сибирские электронные математические известия. - 2022. - Т. 14. - С. 838-847.",
year = "2017",
doi = "10.17377/semi.2017.14.070",
language = "русский",
volume = "14",
pages = "838--847",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Об ω-Независимых Базисах Квазитождеств

AU - Basheyeva, Aynur

AU - Yakovlev, Andrew

N1 - Башеева А.О., Яковлев А.В. Об ω-Независимых Базисах Квазитождеств // Сибирские электронные математические известия. - 2022. - Т. 14. - С. 838-847.

PY - 2017

Y1 - 2017

N2 - In this article, we continue the study of complexity of quasivariety lattices. We prove that there are continuum many quasivarieties of graphs, monounary algebras, digraphs, and pointed Abelian groups having an ω-independet quasi-equational basis.

AB - In this article, we continue the study of complexity of quasivariety lattices. We prove that there are continuum many quasivarieties of graphs, monounary algebras, digraphs, and pointed Abelian groups having an ω-independet quasi-equational basis.

KW - Quasi-equational basis

KW - Quasivariety

KW - ω-independent basis

KW - Quasi-equational basis

KW - Quasivariety

KW - ω-independent basis

UR - http://www.scopus.com/inward/record.url?scp=85049341897&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/e68c5032-5c2a-3bb3-9f9a-2f6e326d8632/

U2 - 10.17377/semi.2017.14.070

DO - 10.17377/semi.2017.14.070

M3 - статья

AN - SCOPUS:85049341897

VL - 14

SP - 838

EP - 847

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 41370501