Research output: Contribution to journal › Article › peer-review
Об ω-Независимых Базисах Квазитождеств. / Basheyeva, Aynur; Yakovlev, Andrew.
In: Siberian Electronic Mathematical Reports, Vol. 14, 2017, p. 838-847.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Об ω-Независимых Базисах Квазитождеств
AU - Basheyeva, Aynur
AU - Yakovlev, Andrew
N1 - Башеева А.О., Яковлев А.В. Об ω-Независимых Базисах Квазитождеств // Сибирские электронные математические известия. - 2022. - Т. 14. - С. 838-847.
PY - 2017
Y1 - 2017
N2 - In this article, we continue the study of complexity of quasivariety lattices. We prove that there are continuum many quasivarieties of graphs, monounary algebras, digraphs, and pointed Abelian groups having an ω-independet quasi-equational basis.
AB - In this article, we continue the study of complexity of quasivariety lattices. We prove that there are continuum many quasivarieties of graphs, monounary algebras, digraphs, and pointed Abelian groups having an ω-independet quasi-equational basis.
KW - Quasi-equational basis
KW - Quasivariety
KW - ω-independent basis
KW - Quasi-equational basis
KW - Quasivariety
KW - ω-independent basis
UR - http://www.scopus.com/inward/record.url?scp=85049341897&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/e68c5032-5c2a-3bb3-9f9a-2f6e326d8632/
U2 - 10.17377/semi.2017.14.070
DO - 10.17377/semi.2017.14.070
M3 - статья
AN - SCOPUS:85049341897
VL - 14
SP - 838
EP - 847
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 41370501