1. 2023
  2. Numerical Simulation of a Swirling Flow in a Francis Draft Tube

    Palkin, E. V., Hrebtov, M. Y., Mullyadzhanov, R. I., Litvinov, I. V. & Alekseenko, S. V., Mar 2023, In: Journal of Applied and Industrial Mathematics. 17, 1, p. 156-162 7 p.

    Research output: Contribution to journalArticlepeer-review

  3. Parametric RANS Simulation of a Cavitation Flow in the Channel of a Control Valve Cage

    Ivashchenko, E. I., Ivashchenko, V. A., Plokhikh, I. A., Mardanov, A. R., Melemchuk, I. A., Pimenov, N. K. & Mullyadzhanov, R. I., Mar 2023, In: Journal of Applied and Industrial Mathematics. 17, 1, p. 86-93 8 p.

    Research output: Contribution to journalArticlepeer-review

  4. Turbulence model development using machine learning methods for a channel flow

    Garmaev, S. & Yakovenko, S., 16 Feb 2023, In: AIP Conference Proceedings. 2504, 1, 030015.

    Research output: Contribution to journalConference articlepeer-review

  5. Applying Transformer-Based Text Summarization for Keyphrase Generation

    Glazkova, A. V. & Morozov, D. A., Jan 2023, In: Lobachevskii Journal of Mathematics. 44, 1, p. 123-136 14 p.

    Research output: Contribution to journalArticlepeer-review

  6. Backflow phenomenon in converging and diverging channels

    Zaripov, D., Li, R., Lukyanov, A., Skrypnik, A., Ivashchenko, E., Mullyadzhanov, R. & Markovich, D., Jan 2023, In: Experiments in Fluids. 64, 1, 11 p., 9.

    Research output: Contribution to journalArticlepeer-review

  7. Bound-state soliton gas as a limit of adiabatically growing integrable turbulence

    Agafontsev, D. S., Gelash, A. A., Mullyadzhanov, R. I. & Zakharov, V. E., Jan 2023, In: Chaos, Solitons and Fractals. 166, 112951.

    Research output: Contribution to journalArticlepeer-review

  8. Assessment of normal myelination in infants and young children using the T1w/T2w mapping technique

    Filimonova, E., Amelina, E., Sazonova, A., Zaitsev, B. & Rzaev, J., 2023, In: Frontiers in Neuroscience. 17, p. 9 1102691.

    Research output: Contribution to journalArticlepeer-review

  9. Automatic Retinogeniculate Visual Pathway Identification Based on Data-driven Fiber Clustering and Anatomical Constrains

    Zeng, Q., Zhang, J., Chen, S., Xie, L., Huang, J., He, J., Pan, Y., Yu, J., Hu, Q., Amelina, E., Amelin, M. & Feng, Y., 2023, Chinese Control Conference, CCC. Institute of Electrical and Electronics Engineers Inc., p. 8015-8020 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  10. Data-Driven Prediction of Unsteady Vortex Phenomena in a Conical Diffuser

    Skripkin, S., Suslov, D., Plokhikh, I., Tsoy, M., Gorelikov, E. & Litvinov, I., 2023, In: Energies. 16, 5, 2108.

    Research output: Contribution to journalArticlepeer-review

  11. Deep Multimodal Fusion Network for the Retinogeniculate Visual Pathway Segmentation

    Xie, L., Yang, L., Zeng, Q., He, J., Huang, J., Feng, Y., Amelina, E. & Amelin, M., 2023, Chinese Control Conference, CCC. Institute of Electrical and Electronics Engineers Inc., p. 7946-7950 5 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Previous 12 3 4 5 6 7 8 9 ...16 Next

ID: 24866909