MUHHUCTEPCTBO HAVKHU U BBICILIEI'O OBPA30BAHMS POCCHUMCKOU
®EJIEPAITN
®EJIEPAJIBHOE TOCYJJAPCTBEHHOE ABTOHOMHOE OBPA30OBATEJILHOE
VYPEXXIEHHUE BBICILIEI'O OBPA3OBAHA |
«HOBOCUBUPCKUI HAITMOHAJIBHBIN UCCJIEJIOBATEJIbCKUM
I'OCYJIAPCTBEHHBIN VHUBEPCUTETY (HOBOCUBHUPCKHI 'OCYIAPCTBEHHbIN
VHUBEPCUTET, HI'Y)

dakynbTeT MexaHuKO-MaTeMaTUYECKU I

Kadenpa Me>xayHapoAHbIi Hay4yHO-00pa30oBaTe IbHEI MaTEMAaTHYECKHI LIEHTP

Hanpaenenue noarotoBku [TpuknagHas MaTemMaTuKa U HHQOpPMaTHKa

BBIITYCKHAS KBAJIMOUKAIIMOHHASA PABOTA MATUCTPA

Bbankcon Pagasinp

Tema pabotel: IIpuMeHeHUE BapUALMOHHBIX CXEM B apXUTEKTypax IrIyOOKOro

06y‘:ICHI/I$[I YCUIIEHUA TUCKPUMHUHATUBHBIX CBOMCTB

BIIOKEHUI

B 3a7]a4ye UACHTU(UKAIIUU JUKTOPOB

«K 3aluTe JOIMyIeHa»

Hayunblii pykoBoguTeab

3aBemyromuii kKadeapoit K.Q.-M.H
I-p ¢u3.-MaT. HayK, AUPEKT JHouent MMI]
ITaBnoBCckMit

MEXAHMRO-
Mapuyk U. B. /... A\ . JATESATTMECKIE OR— > -

QAKYABTET /.
Cenann P S 2

JlaTa 3aIuThL: «...... D 20...r.

Hosocubupck, 2021

MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION
FEDERAL STATE AUTONOMOUS INSTITUTION OF HIGHER EDUCATION
«NOVOSIBIRSK NATIONAL RESEARCH STATE UNIVERSITY»
(NOVOSIBIRSK STATE UNIVERSITY, NSU)

Department Department of Mechanics and Mathematics
Chair Mathematical Center in Akademgorodok
Field of Study Applied mathematics and computer science
MASTER THESIS
Blankson Raphael

Thesis Title: Applying Variational Circuits in Deep Learning Architectures for

Improving Discriminative Power of Speaker Identification

Embeddings

«Admitted to Defensey Scientific Supervisor
Phd Mathematics, Lead

Head of Chair

Director of MCA
Marchuk I. V. /... %

Date of Defense: «...... D S 20...

Novosibirsk, 2021

TABLE OF CONTENTS
Table of Contents e i
List of Illustrations e ii
Listof Tables il
Chapter I: Introduction 1
1.1 ContextoftheStudy 1
1.2 Problem Statement 3
1.3 Aimand Scopeofthe Study 3
1.4 Significanceof the Study L. 3
1.5 Constraintsofthe Study 4
1.6 Preliminaries 4
1.7 Overviewofthethesis 5
Chapter II: Literature Review 6
Chapter III: Methodology 9
3.1 Experimental Environment 10
3.2 Encoding Methodology 10
33 Dataset e e e e e 10
34 Tested Models 11

Chapter IV:Results 25

Number

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10

3.11
3.12
3.13
3.14
3.15
3.16
3.17
4.1
4.2
4.3
4.4

11

LIST OF ILLUSTRATIONS

Page
MFCC for Benjamin Netanyau 11
MECC for Nelson Mandela 12
Residual Learning building block [13] 12
ResNetl8 architecture[13] 13
ResNetl8 architecture summary 14
Train vs Validation loss of the base model ResNet18 14
Train vs Validation accuracy of base model ResNetl8 15
Prediction for base model ResNet18 16
Circuit structure of a single CV fully connected layer 17
Architecture of simple CNN with the fully connected CV quantum
layer. 19
Details of Simple CNNused 19
ResNet combined with the fully connected CV quantum layer 21
loss forquantummodel L oo 22
accuracy for quantummodel L L 22
mixupcodeinpython L. 23
mixup during training step code inpython 24
mixup loss function code inpythono 24
plot of loss for the base model ResNet18 with mixup 26
plot of accuracy for base model ResNet18 withmixup 26
plot of loss for the quantum model with mixup 27

plot of accuracy for quantum model with mixup 27

11

LIST OF TABLES
Number Page
1.1 Gates in Continuous Variable (CV)model 5
3.1 ImitialResults 21

4.1 ResultsWithMixup 25

Chapter 1

INTRODUCTION

The primary focus of this thesis is to investigate how applying quantum algorithms,
specifically the variational circuit to classical deep learning architectures can im-
prove their generalization power on speaker identification problems. To achieve
this, the variational circuit was attached to the end of a simple convolutional neural
network and its performance examined. Also, the variational circuit was used to
replace the final layer of the pre-trained ResNet model and the performance was
also examined. This introductory chapter first gives a brief history of quantum
computing and machine learning to establish a context for the thesis. The problem
statement is then discussed to provide a foundation for defining the scope of the
thesis. Finally, the purpose of the study, limitations of the study and the overview

of the entire thesis is outlined.

1.1 Context of the Study

Quantum computing and machine learning are the topics that are gaining lots of
attention in recent times. This is mainly because of the breakthroughs that have been
achieved in machine learning and the promise of exponential speedup offered by
quantum computing. Quantum computing was born in the early 1980s by Richard
Feynman [1]. He described quantum computers as computers that would be able
to use the quantum properties of a qubit [2]. He wanted computers that can give
an exact simulation of the complexity of interactions between quantum particles
and not an approximate simulation as offered by classical computers. Yuri Manin
extended Feynman’s idea and showed that quantum computers could solve some
problems that are considered to be computationally expensive and hard for classical
computers faster [3]. There have been several algorithms that have shown to solve
problems that are hard for today’s fastest super classical computers. One typical

example is Shor’s algorithm for factoring integers [4].

In the wake of all these years of research, there is no perfect quantum computer
yet ie. a fault-tolerant error-free universal quantum computer that can outperform
classical computers on every task. Recent advancement has been in the area of
near-term devices known as noisy intermediate-scale quantum (NISQ) [5] devices

that are used for performing specific tasks and for exploring the future of quantum

2

applications. The recent milestone by Google in 2019 for quantum supremacy
shows how powerful quantum computers are compared to classical computers. The
Google team solved a task that in theory will take 10000 years to solve on a classical

supercomputer in 200 seconds using a quantum computer.

The first artificial neural network was introduced in 1943 by Warren McCulloch and
Walter Pitts in their effort to imitate the human brain through boolean logic gates
[6]. In 1958, Frank Rosenblatt [7] proposed a more advanced model of the artificial
neuron called the perceptron. The perceptron was able to process numbers as inputs
and had weights that allowed it to learn and be trained over time. It had the property
that a neuron will activate another neuron that is close to it as described by Hebb’s
rule. However, the perceptron was limited and could not recognize many classes and
could not learn the XOR functions [8]. This killed the progress of development and
was known as the first Al winter. In 1986, the backpropagation algorithm [9] was
introduced and could be used to train a multi-layer perceptron. However, because of
the slow processing of computers at the time and the lack of large datasets, progress
was halted and that was the second Al winter. Recently, there has been major success
and advance developments in artificial intelligence. This is mainly due to the large
datasets available and also the highly powerful systems we have now. This has
led to breakthroughs in areas such as computer vision, natural language processing,
reinforcement learning etc. Examples include translation apps like Google translate,

Apple’s Siri, self-driving cars etc.

Quantum machine learning is an exciting field of quantum technology that is also
gaining lots of attention. It involves different approaches to fusing quantum systems
into the already existing machine learning ecosystem ie. the intersection of quantum
computing and machine learning. One of such approaches is the variational circuit, a
classical-quantum hybrid approach where quantum circuits mirror the functionality

and structure of neural networks [10].

The novelty of this research is the use of the mixup algorithm [11] to create a
form of superposition applied to quantum machine learning models that can help
improve performance. The research paper was accepted and presented at the just-
ended International Conference on Data Science and Applications (ICDSA 2021)
and would be published in SCOPUS Indexed Springer Book Series, Lecture Notes

in Networks and Systems.

1.2 Problem Statement
Embeddings is a mapping that transfers object descriptions in a hilbert space where

using metrics like Euclidean metrics, etc, we can distribute classes into regions.

Discriminative power of embeddings means that disimilar vectors or objects in the

embedding space are very far apart and similar objects are very close.

In deep neural networks, architectures like Resnet have shown to provide very good
embeddings with good discriminative power. However, the continuous-variable
quantum space operates in an infinite Hilbert space whereby for finite number
of points, classification problems can be solved very effectively. In [12], they
introduced the fully connected CV layer that makes use of this power in infinite
Hilbert space. Can we use this fully connected CV layer approach to solve some
particular task in the classical domain compared with embeddings provided by

classical neural networks? Can the embeddings be improved?

1.3 Aim and Scope of the Study

This research aims to investigate the performance of quantum machine learning
models on audio data. Using the variational circuit architecture proposed by [12]
which extends the fully connected layer structure from classical neural networks to
the quantum universe, this project first combines the variational circuit with a simple
convolutional network and see if there is any performance boost (generalization)
compared with a classical model trained on the same speaker dataset. A second
experiment is done but this time the variational circuit is combined with a pre-trained
ResNet model [13]. We then attempt to explore if mixing up two audio samples
[11] to create a form of superposition will be possible to improve the performance

of the quantum model.

In this study, we use the continuous variable or photonic quantum model for the

experiment. ResNet18 is chosen as the pre-trained classical model.

1.4 Significance of the Study
One intended outcome of the study is to extend the applicability of quantum machine
learning models to the audio domain and also open the door for more interesting

research in this area.

1.5 Constraints of the Study

* There is a limited number of qubits and qumodes. Currently, Google has 72
qubit computers and about 20 qubits are available in the cloud. For qumodes,
there are only 8 qumodes, which are owned by Xanadu Inc at the time of

writing. This makes it very difficult to encode larger classical data.

* Currently, there is no perfect quantum computer available, thus we have to

make use of Near-term quantum computers with limited qumodes.

* The only photonic quantum computer available owned by Xanadu Inc. is not
yet ready for machine learning problems at the time of writing, therefore we

have to simulate the quantum models on classical computers.

* The overhead of simulating these models on classical computers is very high

and the process is very slow.

* Creating quantum algorithms that can outperform classical computers is very
difficult since the laws of physics restrict our access to information stored in

quantum systems.

1.6 Preliminaries

Below are some terms used in the thesis.

* Qubit or Qumode: The fundamental building block of quantum computing. A
qubit can be defined as a mathematical object with certain quantum properties.
We use operations on qubits or qumodes to construct quantum circuits. Qubits
or qumodes are described as two-level quantum states, for example polarized
photons, spin-1/2 particles, excited atoms, and atoms in ground state. They

are usually described in the basis |0) and |1).

* Gates: Quantum circuit operations on qubits or qumodes. Table 1.1 shows

some gates in the CV model.

* Superposition: Quantum particles can exist in multiple states at the same
time. Mathematically, it is described as a linear combination of states given
by:

) =al0)+B|1) where @ and 3 are complex numbers (1.1)

5

* Entanglement: Extremely strong correlation that exists between quantum

particles.

* Fourier Transform: converts a signal from its original domain to a represen-

tation in the frequency domain.

* Fast Fourier Transform (FFT): An algorithm that computes the discrete Fourier

transform of a sequence or its inverse but has no time information.

* Short-Time Fourier Transform (STFT): Computes several FFT of a fixed
frame at different time intervals and outputs a spectrogram (time + frequency

+ magnitude).

* Mel Frequency Cepstral Coeflicients (MFCC): captures the timbral/textural
aspects of sounds and approximates the human auditory system more closely.

* Spectrogram: A spectrogram is a visual representation of the spectrum of

frequencies of a signal as it varies with time

Gate Unitary
Displacement D(a) = exp(aél:.f —a*d;)
Rotation Ri(¢) = exp(igii;)
Squeezing Si(z) = exp(%(z*di2 - zd?z))
Beamsplitter | BS;;(6, ¢) = exp(@(ei"&i&; — e‘md;f&j))
Cubic phase V; = exp(iZ:£?)

Table 1.1: Gates in Continuous Variable (CV) model

1.7 Overview of the thesis

This thesis consists of five main chapters. In chapter 2, the relevant literature related
to this current research is reviewed. Chapter 3 deals with the methodology and
research design used for the experiments and the description of various tools used
to perform the research. I present the results of the various experiments conducted.

Chapter 5 contains the discussion and conclusions of the study.

Chapter 2

LITERATURE REVIEW

This chapter gives an overview of the relevant studies that have already been done

in the different areas related to this research.

Quantum neural networks are new versions of machine learning models that work on
quantum computers and use quantum properties like superposition, entanglement,
etc in computations. Some quantum neural networks that have been proposed
promise potential quantum advantages such as exponential speed-ups in training

and also faster processing of data [14][15].

Transfer Learning is a field of machine learning where knowledge obtained in a
specific context can be transferred to a different area. A representation of trans-
fer learning can be found in [16]. One method of applying transfer learning in
quantum machine learning involves the use of hybrid models where a quantum vari-
ational circuit is joined with a classical neural network to solve hard problems. This
method introduces three new alternatives to the well-known classical-to-classical
(CC) strategy in which already acquired knowledge is shared between classical
networks. There are Classical-to-quantum (CQ), quantum-to-classical (QC) and
quantum-to-quantum (QQ). Since there do not exist large error-free quantum com-
puters and with the rise of near-term devices, the most practical method is the
classical-quantum (CQ) method which combines classical neural networks with a
variational quantum circuit. However, most of the CQ transfer learning has been in

the qubit system and none in the qumode system [16].

There has been a breakthrough in classical machine learning using neural networks
particularly deep neural networks. One of the reasons accounting for this major
boost is that in deep neural networks the fundamental computational units are
continuous vectors and tensors which are processed on specialized hardware (GPU
and TPUs). Although the qubit systems are popular, they are not naturally suited for
machine learning and rely mostly on approximations and their outputs are generally
discrete. The CV system operates in a higher and infinite-dimensional space which
can be leveraged for machine learning [17] and shows interesting features that can

be capitalized on for machine learning tasks [18][19].

The CV model encodes information continuously and makes it a natural fit to apply

7

the techniques that resulted in classical breakthroughs to quantum systems. The
CV network provides a native architecture for building neural network models on
quantum computers similar to classical computers as shown in [7]. This approach
of mimicking the structure of classical neural networks was done by creating a fully
connected layer similar to the classical and applied to show a proof-of-principle but

also never applied in the field of transfer learning [12].

Another reason for the major success of classical neural networks is the process
of automatic differentiation. Neural networks increase the accuracy of a model
gradually during training through the process of gradient-descent, ie. to minimize
the loss (the inaccuracy of the model) through tweaking the weights and biases.
This is done by finding the partial derivatives of the loss function. Automatic
differentiation is the process that allows neural networks to be very efficient. The
process is difficult to do manually and the introduction of software libraries like
Pytorch, Tensorflow, MXNet, etc that comes with automatic differentiation out
of the box has made it very easy. To be able to train quantum neural networks

successfully for better results, automatic differentiation is key.

There has been the development of software libraries to enable automatic differen-
tiation in quantum computing to fuel the same progress as in the classical methods:
Xanadu Inc. introduced Pennylane which is an open-source software library that can
perform automatic differentiation of hybrid quantum-classical computations in both
qubit and qumode systems [20] and Strawberry Fields, an open-source full-stack
library for designing, simulations, optimization and quantum machine learning of
continuous-variable circuits also by Xanadu Inc. [10] and the recent announcement
by Google introducing TensorflowQuantum (TFQ) which is also open-source but

for the qubit system [21].

The recent development of quantum machine learning is quantum kernel methods

which involve training a kernel method with the kernel function (2.1)

k(x;,x;) =Tr(i,J) 2.1

The quantum kernel methods proposed are considered to be equivalent to training a

deep quantum neural network that measures observables at the end [22].

In recent times, deep learning has been used in many areas of signal processing and
have outshined the traditional and previous methods used like i-vector, Gaussian

mixture models(GMM), hidden Markov models, etc on a large scale where enough

8

datais available. Most deep learning methods like the Convolutional neural networks
(CNN) have been applied to images, which are two-dimensional whiles raw audio
samples are one-dimensional time-series signals that must be studied sequentially in
chronological order. To use audio samples in deep learning architectures, they must
be converted to two dimensions [23]. In terms of speaker recognition, research is
very active and has been applied in fields like forensics, security, speaker diarization,
etc. Speaker recognition in humans is a complex task that involves a combination
of different features and not just the pitch content and individual speaker utterances,
yet deep learning has shown significant success in the area of speaker recognition
as well [24].

Chapter 3

METHODOLOGY

In this chapter, the main methods and design of the project experiment are discussed.
First, a brief description of the experimental environment is given, followed by
the encoding strategy used. Next, a description of the dataset and preprocessing
are discussed. A description of the models with their architectures used in the

experiment is presented.

Speaker identification is a part of speaker recognition and involves the process of
determining which speaker made a particular utterance among a set of speakers. On
a simple note, it involves comparing the given voice with a set of already stored
collection of speakers in order to find out who spoke. There are two forms of speaker
identification namely text-dependent and text-independent. In the text-dependent
form, the words in the utterance are the same as the ones used in training of the set
of speakers. Eg. Hey Siri in apple devices. The text-independent form on the other
hand is not restricted to a particular word or text in the utterance of the speaker to
be identified. We use the text-independent form in this work. To perform speaker
identification, we extract the feature vectors (embeddings) of the given voice of the
speaker and compare with the set of speakers whose embeddings we have already
extracted. The embedding from the set of speakers which is similar or has the
smallest vector distance to the given embedding is the speaker we are looking for.
ie. similar embeddings will have smaller distance between them whiles different
embeddings will have larger distance between them. An example of the vector

distance is the euclidean distance.

Embeddings is the way we represent a vector of high dimensions into a low dimension
using machine learning techniques. Embeddings usually captures features of the
input signal and puts similar inputs close together in the embedding space. This is

also known as the discriminative power of embeddings.

An embedding is a translation of a high-dimensional vector into a low-dimensional
space. Ideally, an embedding captures some of the semantics of the input by placing

similar inputs close together in the embedding space.

The general goal of most quantum algorithms is to perform tasks efficiently in

a Hilbert space. This means embedding the data (input vectors) unto a higher

10

dimensional feature space to make the task easier to solve. In our case, this means
we are able to separate embeddings of different speakers based on their distance
easily. The CV quantum model operates in the infinite dimensional Hilbert space
[19]. This makes the CV model enormously powerful such that we can use a linear
model to separate input vectors (discrimination). Thus our speaker embeddings can

be easily identified easily irrespective of how complex they might be.

3.1 Experimental Environment

All the experiments were done with the classical-quantum model. The quantum
model architecture was designed with Pennylane [20] with its Pytorch interface
on the Strawberryfields [10] simulator while the overall training was done with
Pytorch-Lightning for easier code reproducibility. The preprocessing of audio data
was done with Librosa. However, in future, the experiment could be run on actual

strawberryfields hardware when it becomes available.

3.2 Encoding Methodology

The best method to encode classical data into a quantum circuit is still an open
research problem. In this thesis, the Displacement embedding was chosen to encode
the audio data into the continuous-variable quantum circuit. Mathematically, it is

given by (3.1)

Di(a) = exp(aciyj —a”d;) (3.1)

3.3 Dataset

The dataset used in this thesis was taken from the Speaker Recognition dataset from
Kaggle [25]. It contains speeches of 5 prominent leaders. Each audio is one second
long with a sample rate of 16000. For this work, two speakers, Nelson Mandela
and Benjamin Netanyau were selected. 25% of the data was used for test and 20%
of the remaining was used for validation. This was done to prevent the model from

overfitting. Experiment was run on the 2 selected speakers.

In preprocessing the data with Librosa, MFCC was extracted from the raw audio
waveform at the original sample rate of 16000, with hop length of 512, frame
length of 2048 of fast-Fourier transform and segmented with size 10. Since Pytorch
expects the number of channels first in the shape of the vector, the shape of the
vector embedding is swapped to satisfy the Pytorch requirements with the channel
first. Next, the MFCCs with length equal to the expected number of MFCC vectors

per segment together with their respective labels for each speaker is stored in a

11
JSON file that will be used in the training process. The expected number of MFCC

vectors per each audio segment is calculated as expected 3.2. Figure 3.1 and figure

3.2 shows the MFCC generated from random audio files for each speaker.

number of samples per segment

number of MFCC per segment = hop length (3.2)
100
-0
[
. - —100
= i
- —200
-300

Time

Figure 3.1: MFCC for Benjamin Netanyau

3.4 Tested Models

ResNet

The main model used across the experiments is the ResNet. It was introduced in
2015 by Microsoft to solve the problem deep neural networks face in optimizing
parameters. Deeper models usually find it very difficult to converge because of
vanishing and exploding gradients which could be solved by normalization, however,
this poses another problem where the accuracy of the model becomes saturated
and degrades rapidly. This is not caused by overfitting and stacking more layers
increases the training error [26]. This was solved in the proposed ResNet model
by introducing identity shortcut connections in the network architecture that skips
one or more layers. In simple terms, resnet involves skip connections and stacking
convolutional layers together and finally adding the originally input. A residual
block is shown in figure 3.3. The identity shortcut introduces the term x in the

output and therefore the output becomes F'(x) +x. The shortcut is extremely helpful

12

MFCC

Time

Figure 3.2: MFCC for Nelson Mandela

in the training process as it reduces the training error significantly. ResNet was
selected for the experiments because it generates better embeddings from raw input

features ie. embeddings with more discriminative power.

weight layer
F(x) l relu -
weight layer identity

Figure 3.3: Residual Learning building block [13]

Base Model
The base model used as a benchmark for this experiment is the ResNet18 model.
It is made up 18 main layers hence the name ResNet18. It was pre-trained on the

ImageNet dataset with an input shape of (224 x 224) for classifying images into

13

1000 categories. Since audio data is 1-dimensional, it has to be upsampled to match

the input shape required for the ResNet18 model.

Base Model Training

During training we replace the input and output for first convolutional layer of
the ResNet18 model called convl with 1, 64 for the input and ouput dimension
respectively. We then added a kernel size of 7, a stride of 2 and padding of 3 x 3.
We then freeze all the layers of the ResNet18 model except the final fully-connected
layer which we replace with another fully connected layer that outputs 2, the number
of classes we want to return. We train the model for 5 epochs and perform validation
for every 0.25% step of each epoch. We use the cross entropy loss and the optimizer

used to update the weights is the Adam optimizer.

The architecture of ResNet18 is shown in figure 3.4 and a summary of the architecture
with parameters is shown in figure 3.5. The results are shown in the table 3.1.
We show the loss and accuracy plot of the training in figure 3.6 and figure 3.7
respectively. Prediction results from the ResNet18 base model is shown in figure
3.8.

Skip Connection

Max pool,
stride =2

50*50
25%25

=
(=
—
-

[=
o
—

1*1

100*100
]

7x7 conv, 64, /2
56

3x3 conv, 512 |

,,

33 (‘()Bw‘, 512 |

L]
L]

3x3 conv, 128

X
3x3 conv,
* -
3x3 conv, 256 |
1 x 1
3x3 conv, 256 |
'

33 conv, 512 |

Image
avg pool
)
fc 1000

33 conv, 1268 |

e
i~
o
=15
e
o
]
e
"

3x3, pool, /2
*
3x3 conv, 64
L
3x3 conv, 64
] 2
3x3 conv, 256, /2
2 - 1
3x3 conv, 512, /2 |

3x3 conv, 64
L .
B 3x3conv, 64 |
3x3 conv, 128, /2 |

Layer 1
' Layer 2 ye Fully connected
! fc128

Identical ConvNets

Figure 3.4: ResNetl8 architecture[13]

0275

0.250

0225

0.200

0175

0150

0125

0100

0075

Layer Name Output Size ResNet-18
convl 112 x 112 % 64 7 x 7, 64, stride 2
3 x 3 max pool, stride 2
conv2_x 56 x 56 x 64 3% 3,64
X 2
3x3,64
conv3_x 28 x 28 x 128 3x3,128 1,
| 3x3,128 |
convd_x 14 x 14 x 256 3x3,2% |,
| 3x3,256 |
conv5_x 7 x7 %512 33,512 x 2
! 3 x 3,512 |
average pool 1x1x512 7 x 7 average pool
fully connected 1000 512 x 1000 fully connections
sof tmax 1000

Figure 3.5: ResNetl8 architecture summary

— frain_loss_epoch
val_loss

00 05 10

15 20
epoch

25 30 35 40

Figure 3.6: Train vs Validation loss of the base model ResNet18

14

0.98 1

0.97 1

0.96 1

0.92 4

091 1

—— ftrain_acc_epoch
val_acc
—— fest_acc R
— ——
00 05 10 15 20 25 30 35 20

epoch

Figure 3.7: Train vs Validation accuracy of base model ResNet18

15

Out[64]:

prediction pred_label

labels

w 0 N o BB W N

= =2 =2 a @ @—-
B W NN = O

15

[-1.56, 2.52]
[-1.93, 2.12]
[2.23, -2.33]
[3.03, -3.12)]
[2.9, -3.43]
[1.92, -2.46]
[-0.05, 0.09]
[1.67, -2.5]
[2.34, -2.91]
[-3.3, 3.4]
[2.01, -3.05]
[-3.01, 1.49]
[4.14, -4.8]
2.9, -4.0]
[3.36, -3.69]
[-3.61, 3.72]

1
-1

= O O o O

o o

o o o

o o O

Figure 3.8: Prediction for base model ResNet18

16

17

Quantum Model

As described in [12], the quantum model used is the equivalence of the classical
fully connected architecture in the continuous variable quantum domain. A quantum
neural network can be built from a sequence of layers, with each layer taken from
the set of universal quantum gates. The fully connected quantum layer used is
created from the following layers stacked up: an interferometer, displacement gate
and squeezing gate. These gates act as an affine transformation. The interferometer
is made up of beam splitter and rotation gates. The fully connected layer uses a non-
gaussian gate in our work the Kerr gate as a non-linear activation function. An image
of the fully connected quantum CV layer used in the experiment is shown in figure

3.9 . The quantum model was simulated on the Xanadu “strawberryfields.fock”

lq) R S R D —K [S2E1 N l258
0 0 N
0 R s R D KN
lq) R 0 S R o D 1 K _d_
o0 0
0 R s R D H K AN
Interferometer Interferometer

Figure 3.9: Circuit structure of a single CV fully connected layer

CV fully connected layer made up of interferometer made up of R - Rotation gate
ans BS - Beam Splitters, S - a squeezing gate, another interferometer, D - a
displacement gate and the non-gaussian gate K- Kerr gate

simulator interface and programmed using Xanadu’s Pennylane software with a

cut-off dimension equal to 7.

Quantum Experiments

The experiments performed in this work uses an hybrid approach which involves
combining a classical neural network model and a CV quantum model. As men-
tioned in section 1.5, it takes over 4 hours to simulate and run such a small dataset
on our classical computer for just one epoch. Another hinderance is that, our com-
putational resources are not enough to run for several hours. We performed two

experiments with the quantum model.

18

Simple Classical-Quantum Model

The first experiment was done with a simple classical convolutional network com-
bined with the fully connected quantum model. The details of the architecture is
shown in 3.11. The classical model was made up of a Convolutional layer, max pool
layer and a fully connected layer. The convolutional layer used RELU activation
with a filter size of 3-by-3. The fully connected layer has 768 hidden neurons, a
RELU activation and a dropout layer of 0.3 and returns 64 vectors after the dropout.
We use a fully connected layer as pre-processing block for the quantum layer which
takes the 64 neurons and returns 4 neurons which is equal to the number of qumodes
needed as the input for the quantum model. The classical full connected layer was
built with the pytorch function

torch.nn.Linear(in_features, out_features, bias=True)

which applies a linear transformation to the incoming data of the form of equation
3.3 and the in_features, out_features are the size of the input and output samples

respectively.

y=xAT +b (3.3)

The RELU (rectified linear unit) function is defined mathematically as equation 3.4

and the convolutional layer is built in pytorch with the function

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,

padding=0, dilation=1,groups=1, bias=True, padding_mode=’zeros’)

¢ (x;) = max(0, x;) (3.4)

After the pre-processing block, we feed the 4 output neurons to a tanh function
to put the values between (-1, 1) and multiply by the constant 5 for scaling. The
neurons are then embedded in the quantum space using displacement embedding to
produce 4 qumodes. The 4 qumodes are then fed to an inteferometer, a squeezing
gate, another interferometer, a displacement gate in that order. The output are then
fed to the non-linear kerr gate. The system is then measured on all four qumodes
or wires to obtain a list of classical expectation values. The measurement outputs
are then post-processed using a classical linear layer. The classical layer takes the
4 measurement outputs as inputs and returns 2 neurons which are then passed to
sigmoid layer to be classified based on highest probability. The architecture design

for this experiment is shown in figure 3.10.

19

Speaker,|
1

204

HB_

JAUOD
azioodxely

wioNyaleg
[FoE]
Bujpooug
Juswaoedsiq

:

Quantum Model

2 ‘
Z
z

Speaker|
2

MFCC

Layer | : 5
witn ReLU actvation g layer Batch Fully Gonnectedt-ayer Fully Connected Layer

Figure 3.10: Architecture of simple CNN with the fully connected CV quantum
layer

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 5, 13] 640
RelLU-2 [-1, 64, 5, 13] e
MaxPool2d-3 [-1, 64, 2, 6] =
Flatten-4 [-1, 768] 8
Linear-5 [-1, 64] 49,216
RelLU-6 [-1, 64] e
Dropout-7 [-1, 64] e
Linear-8 [-1, 5] 325

Total params: 50,181
Trainable params: 50,181
Non-trainable params: @

Input size (MB): ©.080
Forward/backward pass size (MB): ©.68
Params size (MB): ©.19

Estimated Total Size (MB): ©.27

Figure 3.11: Details of Simple CNN used

ResNet18 classical model with Quantum Model

In the main experiment, a pre-trained ResNet18 model was combined with the fully
connected quantum model described above. The shape of the MFCC generated
from the raw audio files has the shape (1,4, 13), where 1 is the input channel but
since the ResNet18 was pre-trained on imageNet with input shape (3, 224,224) ie.
3 channels and width, height = 224, the MFCC generated from the embeddings was
upsampled to the shape (1,224,224). The final fully connected layer of ResNet18
was removed and the remaining layers used as a feature-extractor that returns 512
output features. Another fully connected layer used as a pre-processing layer is
attached. It takes the 512 feature vectors and returns 4 neurons that will be used as

20

input for the fully-connected quantum model. We feed the these output neurons to
a tanh non-linear activation function to put the values between (-1, 1) and multiply
by the constant 7 for scaling. The output of this operation are then embedded
in the quantum space using displacement embedding to produce 4 qumodes just
as described earlier. The output qumodes are then fed to an inteferometer made
up of rotation gates and beam splitters, a squeezing gate, another interferometer,
a displacement gate in that order. The output are then fed to the non-linear kerr
gate. The system is then measured on all four qumodes or wires to obtain a list
of classical expectation values. The measurement outputs are then post-processed
using a classical linear layer. The classical layer takes the 4 measurement outputs
as inputs and returns 4 neurons. We use an additional fully connected layer to map
the 4 output neurons to two outputs corresponding to each speaker which are then
passed to sigmoid layer to be classified based on highest probability. The binary
cross-entropy loss is also used in this experiment. The architecture for ResNet18

combined with the quantum model is shown in figure 3.12.

Quantum model Training

The quantum models are trained on the same dataset as the base model. We train
the models for 5 epochs. During training we accumulated the gradients over every
8 steps of a batch. The justification is because our resources are not too powerful to
run the quantum models for longer hours without crushing. We use the binary cross-
entropy loss and the Adam optimizer to adjust the model weights during training.

Mathematically, the binary cross-entropy loss is given by equation (3.5):

2
Lpcg = — Z yilog(pi)
=1

=—[ylog(p) + (1 —y)log(l —p)]

where y; is the true labels and p; is the softmax probability for class i

(3.5)

The results from the two experiments was worse as compared to the base model.
Table 3.1 shows the results together with some hyper-parameters used. The quantum
models performed worse compared to the base model. Although the quantum models
maybe powerful, the smaller size of the dataset and the duration of 1 second are the
possible cause of the poor performance. We observed that the loss was just hovering
around the region of 0.65 without any major changes for the quantum models. The
model checkpoint was saved to a csv file. We read the metrics from the checkpoint

using pandas into a dataframe and plotted the loss and accuracy with matplotlib

21

library. The plots are shown in figure 3.13 and 3.14.

‘ Parameters H ResNet18 ‘ CNN + QNN ‘ ResNetl18 + QNN ‘
| Sample rate | 16000 | 16000 | 16000 |
‘ Num of epochs H 5 ‘ 1 ‘ 3 ‘
| Batch size | 16 | 16 | 16 |
| Learning rate || 0.01 | 0.01 | 0.017 |
Time per epoch || 1.25 258.636 219.37
(min)
‘ Test Accuracy H 98% ‘ 92% ‘ 74% ‘

Table 3.1: Initial Results

Speaker

3 Wnmring

- - Speaker,
2

NNOD

8LISNS Y
Bupooug
juawaoeds|g

Raw audio waveform MFCC
ResNet Model
Quantum Model

Figure 3.12: ResNet combined with the fully connected CV quantum layer

Improving the Models Using Mixup

From table 3.1, we can see that the hybrid models performed badly as compared
to the base model. To improve the performance of the model, a data-agnostic data
augmentation technique called mixup was used [11]. Mixup extends the distribution
of the training data by incorporating linear combinations of the hidden features of
the training data. This enables the model to explore and examine the important
areas of the embedding space effectively. We perform the same linear combination
also for the labels which are one-hot encoded to mix the labels as well. Mixup
solves the problem of neural networks memorizing training data even when strong
regularization techniques are applied. This problem is evident when neural networks
are applied to a dataset from a slightly different distribution than the training data.
Neural network models in this instance give the wrong prediction with a very high

confidence.

22

— ftrain_loss_epoch
056 val_loss

054

052

050

048

046

044

0.42

00 05 10 15 20 25 30 35 40
epoch

Figure 3.13: loss for quantum model

0.925

0.900

0.875

0.850

— train_acc_epoch
val_acc
0825

0.800

0.775

0.750

00 05 10 15 20 25 30 35 40
epoch

Figure 3.14: accuracy for quantum model

We have chosen to apply mixup because it has been proven to increase the gener-
alization power of neural networks and also increase their prediction on novel data
with different distribution. It is also very easy to implement using very few lines of

code as can be seen in figure 3.15. Mixup creates virtual training examples using

23

equation (3.6)

(3.6)

(x;,yi) and (x;, y;) are two examples drawn at random from our training data where
x;,x;j are raw inputs and y;, y; are one-hot encoded labels and A € [0, 1] drawn from
the beta distribution. In this experiment, we took (x;, y;), (x;,y;) from speaker A
and speaker B respectively. It is possible to run mixup on the raw inputs before
feeding them to the model. We did not use this approach because we run out of
memory when generating the examples from mixup on the raw input. However, we
applied mixup on each batch of training data to generate new batches that contains
the two audio input from the speakers mixed, a form that mimics superposition of

quantum systems.

In [23]: # mixup trial
def mixup_data(x, y, alpha=1.8):
"""Returns mixed input, pairs of targets and lambda

nmwn

xl, x2 = X
yl, y2 =y
if alpha > @:
lam = np.random.beta(alpha, alpha)
else:

lam = 1
mixed x = lam * x1 + (1 - lam) * x2
return mixed_x, yl1, y2, lam

Figure 3.15: mixup code in python

We use the same models as described earlier in the earlier experiments.ie. the
ResNet18 base model and the two hybrid models. However during training, we
unpack two features from the batch belonging to each speaker with their labels
before feeding into the neural network models as shown in figure 3.16. We also
use a custom loss function which we call the mixup-criterion that incorporates the
mixup technique in a loss function in our case the binary cross-entropy loss shown
in figure 3.17. We choose an @ = 0.7 that is used to select A randomly from the beta

distribution.

24

def training_step(self, batch, batch_idx):

print(batch)
dl = batch['datal']
d2 = batch['data2']

print(type(x1))
audiol, labell = di[e], d1[1]
audio2, label2 = d2[e], d2[1]
audio, label_a, label_b, lam = mixup_data((audiol, audio2), (labell, label2), ©.7)
outputs = self(audio)
labels = lam * label_a + (1 - lam) * label_b
loss = self.bce(outputs.float(), labels.float())

Loss = mixup_criterion(self.bce, outputs.float(), Label_a.float(), Label_b.float(), Lam)
acc = metrics.functional.accuracy(outputs, labels.long())

self.log_dict({ 'train_loss': loss, "train_acc': acc}, prog_bar = True, on_step = True, on_epoch=True, logger=True)
return loss #{'val_loss': loss, 'val_acc': acc}

Figure 3.16: mixup during training step code in python

[n [24]: def mixup_criterion(criterion, pred, yl1, y2, lam):
return lam * criterion(pred, yl) + (1 - lam) * criterion(pred, y2)

Figure 3.17: mixup loss function code in python

The training process is the same as the earlier experiments without mixup. Results

for mixup is shown in the next chapter.

25
Chapter 4

RESULTS

The results from the mixup experiments performed in this project are shown shown in
this chapter. Table 4.1 shows the results of the experiment with mixup incorporated.
The plot of the loss and accuracy for the base model with mixup is shown in figure
4.1 and figure 4.2 respectively. Figure 4.3 and figure 4.4 shows the plot for loss and

accuracy of the quantum model with mixup.

Experiment ResNet18 CNN + QNN ResNet18 +
QNN
| Validation Accuracy || 100% | 98% | 99% |
| Test Accuracy | 100% | 100% | 100% |

Table 4.1: Results With Mixup

Mixup gave all the models a boost in performance to reach 100% accuracy. One
reason is because of the smaller size of the dataset. Because of the intensive
computation power needed for the quantum models, the number of epochs differed
between the models to avoid out of memory errors. Although, quantum models
achieved accuracy on par with the classical models, they have a higher computation
time because it takes a lot of time and resources to simulate quantum models on
classcal systems. This compute time can be minimized in future when actual
photonic quantum processing units (QPU) becomes available. We also observed
that using mixup did not affect the training time, which proves that mixup does not
add any overhead to computation. The validation accuracy of the quantum models
did not change from the first epoch which means more training would not affect the

results.

0.6944

0.6942

0.6940

0.6938

0.6936

0.6934

0.6932

1000

0.998

0.996

0.994

0.992

0.9%0

0988

— ftrain_loss_epoch

— val_loss

00 05 10 15 20 25 30 35 40
epoch

Figure 4.1: plot of loss for the base model ResNet18 with mixup

= ftrain_acc_epoch

— wval_acc

00 05 10 15 20 25 30 35 10
epoch

Figure 4.2: plot of accuracy for base model ResNet18 with mixup

26

0.702

0.698

0.696

0694

— ftrain_loss_epoch
~ val_loss

1000

0995

0990

0.985

0.980

0975

0970

0965

0.0

05 10 15 20 25 30 35 40
epoch

Figure 4.3: plot of loss for the quantum model with mixup

27

= ftrain_acc_epoch
— wal_acc

00

05 10 15 Z,IO 25 30 35 40
epoch

Figure 4.4: plot of accuracy for quantum model with mixup

28
Chapter 5

CONCLUSION

The main goal of the thesis was to investigate if speaker embeddings can benefit
from the power of quantum models with a focus on continuous-variable (photonic)
quantum models. A simple classical convolutional model and ResNet18 were used

together with a quantum version of the fully connected feed-forward neural network.

The experiments showed that we can use the CV model to improve speaker embed-
dings in the classical domain. Eventhough the initial experiments produced worst
results compared to the classcal model, by using mixup, our results was on par
with the classical model. The results of the experiments improved when the mix-up

technique was applied.

This shows that the generalization performance of the network can be improved by
quantum techniques and shows techniques that can be used in future research to
advance quantum machine learning. However, further research is needed to achieve

a quantum advantage over classical models. P

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

29
REFERENCES

Richard P Feynman. “Quantum mechanical computers”. In: Optics news 11.2
(1985), pp. 11-20.

Richard P Feynman. “Simulating physics with computers”. In: Feynman and
computation. Vol. 296. 1982, pp. 467—488. por: https://doi.org/10.
1007/BF01886518.

Y Manin. “Classical Computing, Quantum Computing, and Shor’s Algo-
rithm”. In: Talk at the Bourbaki Seminar. 1999.

Peter W Shor. “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer”. In: SIAM review 41.2 (1999),
pp. 303-332.

John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quan-
tum 2 (2018), p. 79.

Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115-133.

Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

Marvin Minsky and Seymour Papert. “An introduction to computational
geometry”. In: Cambridge tiass., HIT (1969).

David E Rumelhart, Geoftrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating”. In: errors. Cognitive modeling (1988).

Nathan Killoran et al. “Strawberry fields: A software platform for photonic
quantum computing”. In: Quantum 3 (2019), p. 129.

Hongyi Zhang et al. “mixup: Beyond empirical risk minimization”. In: arXiv
preprint arXiv:1710.09412 (2017).

Nathan Killoran et al. “Continuous-variable quantum neural networks”. In:
Physical Review Research 1.3 (2019), p. 033063.

Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 770-778.
Maria Schuld. Supervised learning with quantum computers. Springer, 2018.

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. “The quest for a
quantum neural network™. In: Quantum Information Processing 13.11 (2014),
pp- 2567-2586.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

30

Andrea Mari et al. “Transfer learning in hybrid classical-quantum neural
networks”. In: Quantum 4 (2020), p. 340.

Maria Schuld and Nathan Killoran. “Quantum machine learning in feature
Hilbert spaces”. In: Physical review letters 122.4 (2019), p. 040504.

Siddhartha Das, George Siopsis, and Christian Weedbrook. “Continuous-
variable quantum gaussian process regression and quantum singular value
decomposition of nonsparse low-rank matrices”. In: Physical Review A 97.2
(2018), p. 022315.

Hoi-Kwan Lau et al. “Quantum machine learning over infinite dimensions”.
In: Physical review letters 118.8 (2017), p. 080501.

Ville Bergholm et al. “Pennylane: Automatic differentiation of hybrid quantum-
classical computations”. In: arXiv preprint arXiv:1811.04968 (2018).

Michael Broughton et al. “Tensorflow quantum: A software framework for
quantum machine learning”. In: arXiv preprint arXiv:2003.02989 (2020).

Hsin-Yuan Huang et al. “Power of data in quantum machine learning”. In:
Nature communications 12.1 (2021), pp. 1-9.

Hendrik Purwins et al. “Deep learning for audio signal processing”. In: IEEE
Journal of Selected Topics in Signal Processing 13.2 (2019), pp. 206-219.

Mitchell McLaren, Yun Lei, and Luciana Ferrer. “Advances in deep neural
network approaches to speaker recognition”. In: 2015 IEEE international
conference on acoustics, speech and signal processing (ICASSP).1EEE. 2015,
pp- 4814-4818.

kongaevans. Kaggle speaker dataset. URL: www.kaggle.com/kongaevans/
speaker-recognition.

Kaiming He and Jian Sun. “Convolutional neural networks at constrained
time cost”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 5353-5360.

	Thesis_title_russian
	Thesis_title_english
	Master_Thesis_Final_edit
	Conclusion
	Master_reference

