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When is the search of relatively maximal

subgroups reduced to quotient groups?

W. B. Guo and D. O. Revin

Abstract. Let X be a class finite groups closed under taking subgroups,
homomorphic images, and extensions, and let kX(G) be the number of con-
jugacy classes X-maximal subgroups of a finite group G. The natural prob-
lem calling for a description, up to conjugacy, of the X-maximal subgroups
of a given finite group is not inductive. In particular, generally speak-
ing, the image of an X-maximal subgroup is not X-maximal in the image
of a homomorphism. Nevertheless, there exist group homomorphisms that
preserve the number of conjugacy classes of maximal X-subgroups (for
example, the homomorphisms whose kernels are X-groups). Under such
homomorphisms, the image of an X-maximal subgroup is always X-maxi-
mal, and, moreover, there is a natural bijection between the conjugacy
classes of X-maximal subgroups of the image and preimage. In the present
paper, all such homomorphisms are completely described. More precisely,
it is shown that, for a homomorphism φ from a group G, the equality
kX(G) = kX(imφ) holds if and only if kX(kerφ) = 1, which in turn is
equivalent to the fact that the composition factors of the kernel of φ lie in
an explicitly given list.

Keywords: finite group, complete class, X-maximal subgroup, Hall sub-
group, reduction X-theorem.

§ 1. Introduction

1.1. The main result. In what follows, we will consider only finite groups, and
a ‘group’ will always mean a ‘finite group’.

A group from a class of groups X will be simply called an X-group. The set of
(inclusion) maximal X-subgroups (or X-maximal subgroups) of a group G will be
denoted by mX(G). The group G itself, acting on mX(G) by conjugacies, splits
this set into orbits (the conjugacy classes). The number of these classes is denoted
by kX(G). The term a ‘relatively maximal subgroup’, which we used in the title
of the present paper, was proposed by Wielandt [1] in order to denote X-maximal
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subgroups without indication of a concrete class X and to distinguish them from
maximal subgroups (in the usual sense, that is, from the maximal ones among the
proper ones). Following Wielandt [2], [3], we say that the nonempty class X of finite
groups is complete if it is closed under taking subgroups, homomorphic images, and
extensions. The last means that G ∈ X, whenever N ∈ X and G/N ∈ X for some
normal subgroup N of the group G.

For a complete class X, the problem of when is the search of X-maximal sub-

groups of a group G reduced to the analogous problem for the quotient group G/N ,
as formulated in the title of the paper, turns out to be equivalent to the problem
of when kX(G) = kX(G/N)? The main result of the paper is the following

Theorem 1. Let X be a complete class of groups and N be a normal subgroup of

a finite group G. Then if kX(G) = kX(G/N), then kX(N) = 1.

The converse result to Theorem 1 was also proved in [4], Theorem 1. The
following theorem holds.

Theorem 2. Let X be a complete class of groups and N be a normal subgroup of

a finite group G. Then kX(G) = kX(G/N) if and only if kX(N) = 1.

That is, the number of classes of conjugate X-maximal subgroups remains
unchanged when transiting from a group G to the quotient group G/N if and
only if in N all X-maximal subgroups are conjugate. There is also an exhaustive
description of the groups A with kX(A) = 1: this condition is equivalent to say-
ing that each nonabelian composition factor of the group A either lies in X, or
is isomorphic to a simple group indicated in [4], Appendix A. So, in the case of
a complete class X, we give a complete answer to the question raised in the title
of the present paper.

The assumption in Theorem 2 that the class X is complete is essential. Indeed,
the conclusion of the theorem fails to hold if X = A is the class of all abelian groups
or X = N is the class of all nilpotent groups. In both cases, X is not closed under
extensions and kX(Sym3) = 2 6= 1 = kX(Sym3 /Alt3), even though kX(Alt3) = 1.

1.2. Motivation and historical remarks. The following class of problems
appears in the finite group theory and its applications starting from the seminal
studies of É. Galois and C. Jordan: given a group G (for example, a symmetric

group) and a class X of finite groups (for example, the class of solvable groups),
find the X-subgroups of the group G. It seems that problems of this kind cannot
be successfully attacked in the general setting. If the class X is complete (similarly
to the class of solvable groups), one may confine oneself with search of X-maximal
subgroups.

In what follows, X will always denote a fixed complete class. In addition to the
class S of solvable groups, among typical examples of complete classes we mention
the class Gπ of all π-groups and the class Sπ of all solvable π-groups for a given
subset π of the set P of all primes (recall that a π-group is a group in which any
prime divisor of the order lies in π). Note that, for the class X, we have the
inclusions:

Sπ ⊆ X ⊆ Gπ,



1104 W. B. Guo and D. O. Revin

here π is the set

π(X) = {p ∈ P | there exists G ∈ X such that p divides |G|}.

The classes of π-separable and π-solvable groups1 are also complete.
It is natural that the X-maximal subgroups should be studied up to a conjugacy.

By an X-scheme we will mean a complete system of representatives of its classes
of conjugate X-maximal subgroups. The cardinality of an X-scheme of a group G
is defined as the above number kX(G). The main aim in the problems mentioned
above can be looked upon as the search of an X-scheme and description of the
structure of its elements.

If X = Gp is the class of p-groups for a prime p, then any X-maximal subgroup
is a Sylow p-subgroup. Such subgroups in any group are conjugate [5]. It is also
worth mentioning that the X-maximal subgroups of solvable groups are, precisely,
the so-called π(X)-Hall subgroups, which form a conjugacy class by Hall’s theo-
rem [6]. The search of the Sylow and Hall subgroups is substantially facilitated by
their properties that allow one to change from a group to sections of a normal or
a subnormal series in inductive arguments. For example, if H is a Sylow p-subgroup
of the group G and N E G, then H ∩N and HN/N are Sylow p-subgroups in N
and G/N , respectively.

In the general case, the problems under considerations are highly noniductive,
inasmuch as both the intersection H ∩N of the subgroups H ∈ mX(G) and N E G,
or the image of HN/N in G/N (or, equivalently, the image of H under an arbitrary
epimorphism) may fail to be X-maximal subgroups in N and G/N (see [2], [3]).
However, for intersections with normal subgroups, the situation can be partially
improved by studying the X-submaximal subgroups,2 which are generalizations of
X-maximal subgroups (see [3]).

The present paper is concerned with the behaviour of X-maximal subgroups
under homomorphisms. It is known (see [2], § 14.2, [3], § 4.3) that if, for a class X,
there exists a group L with nonconjugate X-maximal subgroups, then any group G is
the image of a homomorphism (more precisely, of the natural epimorphism from the
regular wreath product L ≀G) under which each (not only X-maximal) X-subgroup
coincides with the image of some X-maximal subgroup. In other words, an attempt
to extend the concept of an X-maximal subgroup to be in accord with homomorphic
images calls for the study of all X-subgroups. Another challenge associated with the
transition to the epimorphic image is that the images of nonconjugate X-maximal
subgroups may happen to be conjugate, and, as a result, information on conjugacy
classes may be lost.

Consequently, it is important to describe all the cases where a transition from
a group G to the quotient group G/N is a reduction for the highlighted type of
problems, that is, when X-maximality of subgroups is preserved and information
on their conjugacy is not distorted. In other words, it is important to know when

1Recall that a group is called π-separable if it admits a (sub)normal series in which all factors
are π- or π′-groups, where π′ = P \ π. If, in addition, all π-factors of this series are solvable, the
group is called π-solvable.

2According to Wielandt [3], a subgroup H of a group G is called an X-submaximal if G can be
embedded as a subnormal subgroup into some group G∗ so that H = H∗ ∩G for an appropriate
H∗ ∈ mX(G

∗).
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an X-scheme is carried over to an X-scheme; in particular,

kX(G) = kX(G/N). (1.1)

The situation N ∈ X is an example. Less straightforward examples were given
by Wielandt in [2], who, following Chunikhin [7]–[10], proposed a programme for
finding all ‘good’ cases. The present paper concludes this program.

Equality (1.1) is not only necessary but also a sufficient condition that a canonical
(or any other) epimorphism : G → G/N would send an X-scheme of a group G
into the X-scheme G/N . Indeed, it is known that each X-subgroup of G is the image
of an X-subgroup from G (see Lemma 1). Hence mX(G) ⊆ {H | H ∈ mX(G)} and
kX(G) 6 kX(G). So, (1.1) implies

mX(G) = {H | H ∈ mX(G)}.

Therefore, the existence of some one-one correspondence between classes of con-
jugate X-maximal subgroups in the groups G and G = G/N , as implied by (1.1),
gives evidence about the presence of a natural one-one correspondence between
these classes induced by the mapping H 7→ H .

We will say that the reduction X-theorem

– holds for a pair (G,N), N E G, if (1.1) holds;
– holds for a group A if it holds for any pair (G,N) with N ∼= A.
Setting G = A, we see that the reduction X-theorem for a group A implies the

conjugacy of the X-maximal subgroups: kX(A) = kX(A/A) = 1. Wielandt [2],
§ 15.4, noted that the reduction X-theorem itself for A, would, in turn, follow from
the conjugacy of the X-submaximal subgroups, and raised the conjecture (see [2],
Offene Frage zu 15.4, which was proved later in [4], Theorem 1), to the effect
that the conjugacy of the X-maximal and X-submaximal subgroups are equivalent.
Therefore, the reduction X-theorem for the group A is equivalent to the equality
kX(A) = 1. Next, the condition kX(A) = 1 is equivalent to saying that kX(S) = 1
for any composition factor S for the group A. If S is a simple group, then necessary
and sufficient arithmetic conditions on natural parameters3 of the group S for the
equality kX(S) = 1 to hold are known (see [4], Theorem 1, Appendix A). So,
the results of [4] can be interpreted as a description of all such pairs (G,N) for
which equality (1.1) is controlled only by the isomorphism type of the group N .

The isomorphism type of a group G and of its normal subgroup N do not define
uniquely the number kX(G/N). For example, the group G = PSL2(7) × PGL2(7)
has two normal subgroups N1 and N2 such that N1

∼= N2
∼= PSL2(7), G/N1

∼=
Z2 × PSL2(7), and G/N2

∼= PGL2(7). However, for the class X = S of solvable
groups it can be easily shown (see, for example, [11]) that kX(G/N1) = 3, while
kX(G/N2) = 4.

Nevertheless, in view of Theorem 1, the equality kX(G) = kX(G/N) for a group G
and its normal subgroup N is an intrinsic property of the group N , which does not
depend only on the particularities of the embedding of N into G, but also on the
group G itself, and which implies the reduction X-theorem for N . This is the fact

3For example, for the group S = PSLn(q), where q is a power of p ∈ π(X), the equality
kX(S) = 1 is equivalent to saying that either S ∈ X, or s | |S| ⇒ s | q(q − 1) and s > n for all
s ∈ π(X).
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which advances Theorem 1 in comparison with Theorem 1 in [4]. It is worth pointing
out that whereas Theorem 1 in [4] was proved by reducing the general situation
to the known particular case X = Gπ (see [13], [12]), our result in Theorem 1 was
unknown even for this case.

From the description of all groups for which the reduction X-theorem (see [4],
Theorem 1) holds, we get a description of all pairs for which it holds.

Corollary 1. Let X be a complete class. Then a necessary and sufficient condition

that the reduction X-theorem hold for a pair (G,N) is that, for any composition fac-

tor S of the group N , either S ∈ X, or one of conditions I–VII in [4], Appendix A,
is met for the pair (S,X).

1.3. Some corollaries. Since kX(G/N) 6 kX(G) for any normal subgroup N of
a group G, the following result is a direct consequence of Theorem 1.

Corollary 2. Let X be a complete class of groups and N be a normal subgroup of

a finite group G such that kX(N) > 1. Then kX(G) > kX(G/N).

Moreover, as the above example of the group G = PSL2(7) × PGL2(7) shows,
the precise value kX(G/N) does not only depend on the numbers kX(G) and kX(N)
themselves, but is not even controlled by the isomorphism type of the groups G
and N .

From Theorem 2 it follows that any group G contains the largest normal sub-
group R such that kX(G) = kX(G/R).

Corollary 3. Let X be a complete class. For an arbitrary finite group G, consider

the subgroup R = 〈N | N E G and kX(G) = kX(G/N)〉. This subgroup has the

following properties:
(i) kX(G) = kX(G/R);
(ii) if N E G and N 6 R, then kX(G) = kX(G/N);
(iii) if G = G/R, then kX(G) = kX(G/N) implies N = 1 for any N E G.

In view of Theorem 2, the subgroup R 6 G from Corollary 3 coincides with
the DX-radical of the group G, where, as in [14], [4], by DX we denote the class
of finite groups in which all X-maximal subgroups are conjugate. The class DX

is closed under taking normal subgroups of homomorphic images and extensions,4

and, in particular, is a Fitting class (see the definition in [15]), and hence in any
group there exits the DX-radical. Note that, in general, DX is not a complete class,
because it may fail to be closed under taking subgroups (see [16], Theorem 1.7).

The quotient group G/R will be called a complete reduction over X of a group G,
and the subgroup R = 〈N | N E G and kX(G) = kX(G/N)〉 itself will be called
the kernel of reduction. A group G will be called completely reduced over X if the
kernel of its reduction is trivial. The search problem of an X-scheme can be reduced
to consideration of completely reduced groups.

Given a group G, let

omX(G) = {K 6 G | mX(K) ∩mX(G) 6= ∅}

4See Corollary 1 in [4]. Note also that in view of the inequality kX(G/N) 6 kX(G) this result
is a particular case of Theorem 2.
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be the set of all overgroups of X-maximal subgroups. The following result, which
follows from Theorem 2 and the main result of [16], is not so obvious.

Corollary 4. Let X be a complete class of groups and let N be a normal subgroup

of a finite group G. Then the following conditions are equivalent:
(i) kX(G) = kX(G/N);
(ii) kX(K) = kX(K/(K ∩N)) for all K ∈ omX(G).

1.4. The category of groups and X-isoschematisms. Let us formulate The-
orem 2 in the language of homomorphisms. An epimorphism φ : G → G∗ will be
said to be an isoschematism over X (or, simply, an X-isoschematism) if it maps
an X-scheme of the group G (each or some) into an X-scheme of the group G∗.
Theorem 2 is equivalent to saying that an epimorphism φ is an X-isoschematism if

and only if kX(kerφ) = 1.
According to the above, X-isoschematicity of an epimorphism φ : G → G∗ is com-

pletely determined only by the groups G and G∗, and is independent of a concrete
mapping. In other words, the following result holds.

Proposition 1. Let G be a finite group, and let G∗ be its epimorphic image. Given

a complete class X, the following assertions are equivalent:
(i) there exists an X-isoschematism φ : G → G∗ ;
(ii) any epimorphism φ : G → G∗ is an X-isoschematism;
(iii) kX(G) = kX(G

∗).

The kernels of two X-isoschematisms from G onto G∗ may fail to be isomorphic,
even though they have the same set of composition factors by the Jordan–Hölder
theorem.

Existence of an X-isoschematism from G onto G∗ is written as

G ։
X

G∗.

The same symbol will also be used in the notation

φ : G ։
X

G∗,

which means that the mapping φ is an X-isoschematism from G onto G∗.
The relation ։

X

can be considered as a relation between groups. Clearly, this

relation is reflexive and transitive, but not symmetric. Let us symmetrize it. We
say that two groups G1 and G2 are isoschemic over X (or X-isoschemic), written

G1 ≡
X

G2,

if there exist X-isoschematisms from G1 and G2 onto the same group:

G1

X
    
❆❆

❆❆
❆❆

❆❆
≡
X

G2

X
~~~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

G0.
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The relation ≡
X

is, clearly, reflexive and symmetric. In the actual fact, this relation

defines an equivalence on groups; its transitivity follows from Theorem 2. Using
this relation, one can describe the category of groups and X-isoschematisms.

Corollary 5. For finite groups G1 and G2 , G1 ≡
X

G2 if and only if the complete

reductions of these groups over X are isomorphic. The relation ≡
X

is an equivalence

on finite groups. Each equivalence class is a subcategory in the category of all

groups and X-isoschematisms and contains a unique (up to isomorphism) completely

reduced over X group which is an universally attracting object5 in this subcategory.

In the language of homomorphisms, Corollary 4 can be stated as follows. Let

φ be an X-isoschematism defined on a group G, and let K be an overgroup of

an X-maximal subgroup from G. Then the restriction of φ to K is an X-isoschema-

tism K ։
X

Kφ .

§ 2. Notation and preliminary lemmas

We will use the following standard notation from the group theory (see, for
example, [11], [15], [18]–[20]). Given a natural number n, by π(n) we denote the set
of its prime divisors; for a group G, we set π(G) = π(|G|). For a fixed set π ⊆ P of
primes and a complete class X of finite groups, we will use the following not quite
standard notation:

Ω/G is the set of orbits of an action of the group G on a set Ω;

|Ω : G| is the number of orbits of an action of G on Ω, i.e. |Ω : G| = |Ω/G|

HallX(G) is the set of X-Hall subgroups of the group G— these being the X-sub-
groups whose index is not divisible by any number from π(X);

Hallπ(G) is the set of π-Hall subgroups in G, that is, HallX(G) for X = Gπ;

mX(G) is the set of X-maximal subgroups of the group G;

kX(G) is the number of the conjugacy classes of X-maximal subgroups of the
group G, that is, kX(G) = |mX(G) : G| for the action of the group G by conjugations
on the set mX(G);

hX(G) is the number of conjugacy classes of X-Hall subgroups of the group G,
that is, hX(G) = |HallX(G) : G| for the action of the group G by conjugations on
the set HallX(G);

EX is the class of all finite groups G such that hX(G) > 1 (or, equivalently,
HallX(G) 6= ∅);

CX is the class of all finite groups G such that hX(G) = 1;

DX is the class of all finite groups G such that kX(G) = 1;

MX is the class of all finite groups G such that kX(G) = hX(G) (or, equivalently,
mX(G) = HallX(G)).

The notation EX, CX and DX, which generalizes P. Hall’s notation Eπ, Cπ and Dπ

(see [21], and also [15], Ch. I, § 3, [20], Ch. 5, § 3), is equivalent to that used by
P. Hall if X = Gπ is the class of all π-groups. By definition, DX = CX ∩ MX. The

5See the definition in [17], Ch. 1, § 7. Note that in this category, X-isoschematisms are consid-
ered as morphisms up to a composition with automorphisms of groups.



When is the search of relatively maximal subgroups reduced to quotient groups? 1109

inclusions between the classes EX, CX, MX and DX are shown in the diagram

EX

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

CX

♣♣♣♣♣♣♣♣♣♣♣♣♣

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

MX

♣♣
♣♣
♣♣
♣♣
♣♣
♣

DX = CX ∩ MX.

In the case X = Gπ, we will use the natural notation kπ(G) and hπ(G), respec-
tively, for the number of conjugacy classes of π-maximal and π-Hall subgroups of
a group G. We will say that n ∈ N is a π-number if π(n) ⊆ π.

Lemma 1 (see [22], Ch. III, Theorem 3.9). Let X be a complete class. Given

a group homomorphism φ : G → G0 , suppose that K ∈ X for some subgroup

K 6 Gφ . Then K = Hφ for some X-subgroup H 6 G. In particular, mX(G
φ) ⊆

mX(G)φ .

By X
′ we denote the class of all groups G such that mX(G) = {1}. A group is

called X-separable if it admits a (sub)normal series in which each factor is either
an X- or an X

′-group.
The following lemma summarizes some known results on the behaviour of X-max-

imal and X-Hall subgroups.

Lemma 2. Let N be a normal subgroup of the group G. Then the following asser-

tions hold.
(i) If H ∈ HallX(G), then H ∩ N ∈ HallX(N) and HN/N ∈ HallX(G/N)

(see [20], Ch. IV, § 5.11).
(ii) Let G/N ∈ X. Then a necessary and sufficient condition that, for H ∈

HallX(N), there exist a subgroup K ∈ HallX(G) such that H = K ∩ N is that

HN = HG (that is, when the class HN ∈ HallX(N)/N is invariant under the

action of the group G on the set HallX(N)/N ; see [23], Lemma 2.1, (e)).
(iii) Let N be an X-separable group. Then kX(G) = kX(G/N). In particular,

G ∈ DX if and only if G/N ∈ DX (see [2], § 12.9).

Lemma 3 (see [4], Theorem 1). Let N be a normal subgroup of a group G and

kX(N) = 1. Then kX(G) = kX(G/N).

Given subgroups S,H of the group G, we denote by AutH(S) the H-induced

automorphism group of the group S, that is, the image in Aut(S) of the homomor-
phism

αH : NH(S) → Aut(S),

which associates with each x ∈ NH(S) the automorphism of the group S defined
by s 7→ sx = x−1sx for all s ∈ S. The kernel of this homomorphism is CH(S), and
hence

AutH(S) ∼= NH(S)/CH(S).

If H 6 K 6 G, then the homomorphism αH is the restriction of the homomorphism
αK : NK(S) → Aut(S) to NH(S). Therefore, AutH(S) 6 AutK(S).
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Lemma 4. Let S be a simple nonabelian subnormal subgroup of a group G, let

H ∈ HallX(S), and let the group AutG(S) stabilize the conjugacy class of the

subgroup H in S (that is, HAutG(S) = HS ). Consider an arbitrary right transversal

g1, . . . , gn of the subgroup NG(S) in G. Let

M = 〈Sgi | i = 1, . . . , n〉 and V = 〈Hgi | i = 1, . . . , n〉.

Then M = 〈SG〉 is a minimal normal subgroup of the group G, and

(i) V G = V M ;
(ii) V ∈ HallX(M);
(iii) if G/M ∈ X, then V = K ∩M and H = K ∩ S for some K ∈ HallX(G).

Proof. For any g ∈ G we have Sg ∈ {Sgi | i = 1, . . . , n}, and hence M = 〈SG〉 E G.
We also note that [Sgi , Sgj ] = 1 for i 6= j since the subgroup S is simple and
subnormal.

Let g ∈ G. There exist a permutation σ ∈ Symn and elements x1, . . . , xn ∈
NG(S) such that gig = xigiσ. Consider the automorphisms γi ∈ AutG(S) defined
by γi : s 7→ sxi . By the assumption, Hxi = Hγi = Hsi for some si ∈ S. We set
ai = sgi

iσ−1 and a = a1 · · · an. It is clear that a ∈ M . The equality V G = V M will
be verified if show that V g = V a.

By definition ai ∈ Sgi and Hgia = Hgiai . We have

V g = 〈Hgig | i = 1, . . . , n〉 = 〈Hxigiσ | i = 1, . . . , n〉

= 〈Hsigiσ | i = 1, . . . , n〉 = 〈Hs
iσ−1gi | i = 1, . . . , n〉

= 〈Hgis
gi

iσ−1 | i = 1, . . . , n〉 = 〈Hgiai | i = 1, . . . , n〉 = 〈Hgia | i = 1, . . . , n〉 = V a.

This proves assertion (i). Next, V is a direct product of the X-groups Hgi , i =
1, . . . , n. Hence V ∈ X. Further, since H ∈ HallX(S), the number

|M : V | =

n
∏

i=1

|Sgi : Hgi | = |S : H|n

is not divisible by any number from π(X). Hence V ∈ HallX(M), which proves (ii).
Finally, (iii) is secured by (i) and Lemma 2, (ii). Lemma 4 is proved.

Lemma 5. Let a normal subgroup N of a group G be a direct product of non-

abelian simple groups, and S be one of these groups. Suppose that G = KN for

some subgroup K . Then

(i) NG(S) = NNK(S);
(ii) AutG(S) = Inn(S)AutK(S).

Proof. Let N = S1 × S2 × · · · × Sn and S1 = S. Then

N 6 NG(S) and S2 × · · · × Sn = CN (S) 6 CG(S).

Hence NG(S) = NNK(S), as claimed in (i). Let

α : NG(S) → Aut(S)
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denote the natural homomorphism induced by conjugations. Its kernel is CG(S).
We have Sα = AutS(S) = Inn(S), N = SCN (S). Hence Nα = Inn(S) and

AutG(S) = NG(S)
α = NαNK(S)α = Inn(S)AutK(S).

This proves assertion (ii), and, therefore, the lemma.

The key role in the proof of Theorem 1 is played by the theorem on the number
of classes of conjugate π-Hall subgroups in simple groups (see [23]). We will use
the following refined version of this result.

Lemma 6 (see [23], Theorem 1.1). Let S be a simple finite group possessing

a π-Hall subgroup for some set π of primes. Then one of the following asser-

tions holds:
(i) 2 /∈ π and hπ(S) = 1;
(ii) 3 /∈ π and hπ(S) ∈ {1, 2};
(iii) 2, 3 ∈ π and hπ(S) ∈ {1, 2, 3, 4, 9}.

Lemma 7 (see [14], Lemma 12). Let X be a complete class. We set π = π(X).
Suppose also that hπ(S) = 9. Then hX(S) is one of the numbers 0, 1 or 9.

The following result is a consequence of Lemmas 6 and 7.

Lemma 8. Let S be a simple finite group. Then one of the following assertions

holds:
(i) 2 /∈ π(X) and hX(S) ∈ {0, 1};
(ii) 3 /∈ π(X) and hX(S) ∈ {0, 1, 2};
(iii) 2, 3 ∈ π(X) and hX(S) ∈ {0, 1, 2, 3, 4, 9}.

Assume that a simple group S satisfies hX(S) = 9. Since hX(S) 6 hπ(S) for π =
π(X), by Lemma 6 we have hX(S) = hπ(S), and, therefore, HallX(S) = Hallπ(S).
Now, in view of Lemmas 2.3, 3.1, 4.4, 8.1 in [23], we get the following result on the
structure of X-Hall subgroups of a group S.

Lemma 9. Let S be a simple finite group and hX(S) = 9 for some complete class X.
Then the following assertions hold.

(i) S ∼= PSp2n(q)
∼= PSp(V ), where q is a power of a prime p /∈ π(X), and V is

the vector space of dimension 2n over Fq with nondegenerate skew-symmetric form

associated with PSp2n(q).
(ii) π(X) ∩ π(S) ⊆ π(q2 − 1) and

– either π(X) ∩ π(S) = {2, 3} and n ∈ {5, 7},
– or π(X) ∩ π(S) = {2, 3, 5} and n = 7.

(iii) Any π(X)-Hall subgroup of the group PSp2n(q) is contained in the stabi-

lizer M of a decomposition of the space V in the orthogonal sum

V = V1 ⊥ · · · ⊥ Vn

of nondegenerate isometric subspaces of dimension 2. There exists a subgroup

A E M such that A = L1 . . . Ln , where Li
∼= Sp(Vi) ∼= Sp2(q)

∼= SL2(q), [Li, Lj ] = 1,
i, j = 1, . . . , n, i 6= j , and M/A ∼= Symn .
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(iv) hX(Symn) = 1. In addition,
– if π(X) ∩ π(S) = {2, 3}, then any X-Hall subgroup of the group Symn is

isomorphic to Sym4 for n = 5 and to Sym3 × Sym4 for n = 7;
– if π(X) ∩ π(S) = {2, 3, 5}, then any X-Hall subgroup of the group Symn =

Sym7 is isomorphic to Sym6 (in particular, Symm ∈ X for m 6 6).
(v) hX(Sp2(q)) = 3. In addition,

– if π(X) ∩ π(S) = {2, 3}, then all X-Hall subgroups in Sp2(q)
∼= SL2(q) are

solvable, Sp2(q) contains one class of conjugate X-Hall subgroups isomorphic

to the generalized quaternion group6 of order 48, and two classes of X-Hall

subgroups isomorphic to 2. Sym4 ;
– if π(X)∩π(S) = {2, 3, 5}, then the group Sp2(q)

∼= SL2(q) contains a conju-

gacy class of solvable X-Hall subgroups isomorphic to the generalized quater-

nion group of order 120, and two classes of X-Hall subgroups isomorphic to

SL2(5) ∼= 2.Alt5 .
(vi) The number of fixed points of any subgroup G 6 Aut(S) under its action

on the set HallX(S)/S is either 1 or 9.

§ 3. Frattini argument for X-Hall subgroups

Our main purpose in this section is to prove the following result.

Proposition 2. Let a group G have a normal subgroup A such that A = KN
for some subgroup N normal in G, where N is a direct product of nonabelian

simple groups and some K ∈ HallX(G). Then there exists L ∈ HallX(A) such that

G = ANG(L).

Proof. Let π = π(X). Since A contains H ∈ HallX(G), the index |G : A| is
a π′-number. Since A E G, we have HallX(G) = HallX(A), and G/A is a π′-group.

Let N = S1 × · · · × Sn, where Si, i = 1, . . . , n, are nonabelian simple groups.
Let us establish some facts on X-Hall subgroups of Si, on conjugacy classes of
such subgroups, and on the action on these classes of the groups of G-induced
automorphisms. We fix S ∈ {S1, . . . , Sn}. Since K ∩ S ∈ HallX(S), we have
S ∈ EX, and hence, by Lemma 8,

hX(S) ∈ {1, 2, 3, 4, 9}.

Let Ω be the set of all fixed points of the group AutA(S) acting on the set
HallX(S)/S of conjugacy classes of X-Hall subgroups of the group S, that is,

Ω = {HS | H ∈ HallX(S), ∀ a ∈ NA(S) ∃x ∈ S : Ha = Hx}.

Note that Ω 6= ∅, because (K∩S)S ∈ Ω. Indeed, N 6 NA(S), and hence, NA(S) =
NKN (S) = NK(S)N . In addition, the conjugacy class (K ∩ S)S is invariant under
both groups NK(S) and N . Hence it is invariant under both NA(S) and AutA(S),
and, therefore, lies in Ω.

Since A E G, we have NA(S) E NG(S). Hence AutA(S) E AutG(S) and,
therefore, the group AutG(S) acts on Ω. We assert that

6A generalized quaternion group is understood according to the definition in [19], Ch. II, § 9,
pp. 258–259.
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1◦) the length of some orbit of the group AutG(S) on Ω is a π-number.
Indeed, |Ω| 6 hX(S), and the length of any orbit in AutG(S) on Ω is at most |Ω|.

If 2 /∈ π or 3 /∈ π, then from Lemma 8 it follows that the length of any orbit of
the group AutG(S) on Ω is a π-number. So, we can assume that 2, 3 ∈ π. Now
if hX(S) 6 4, then the length of any orbit of the group AutG(S) on Ω is again
a π-number. So, we can assume that hX(S) = 9. From Lemma 9 it follows that
|Ω| ∈ {1, 9}. The case |Ω| = 1 is clear. The only non-{2, 3}-numbers majorized
by 9 are 5 and 7, and so, as is easily checked, any partition of 9 into a sum of
natural numbers involves a {2, 3}-number and, therefore, a π-number. Hence the
length of one of the orbits into which Ω splits relative to the action ofAutG(S) is
a π-number.

Assertion 1◦) can be refined as follows:
2◦) if the length of an orbit of AutG(S) on Ω is a π-number, then this length

is 1.
The hypotheses of the theorem imply that G/A is a π′-group. So, both the group

NG(S)A/A ∼= NG(S)/NA(S) and its homomorphic image

NG(S)/NA(S)CG(S) ∼= (NG(S)/CG(S))/(NA(S)CG(S)/CG(S))
∼= AutG(S)/AutA(S)

are also π′-groups. By definition of the set Ω, AutA(S) stabilizes any element
from Ω. Hence the length of any orbit on Ω of the group AutG(S) divides a π′-num-
ber |AutG(S) : AutA(S)| and, therefore, is itself a π′-number. If a number is simul-
taneously a π- and a π′-number, then it is equal to 1.

From 1◦) and 2◦) we conclude that
3◦) there exist H ∈ HallX(S) such that, for any γ ∈ AutG(S), the subgroup Hγ

is conjugate in S to H .
We now assert the following:
4◦) any minimal normal subgroup M of the group G such that M 6 N contains

a subgroup VM ∈ HallX(M) such that V M
M = V G

M .
It can be assumed that M = 〈SG〉. Assertion 4◦) follows from Lemma 4.
We also assert that
5◦) there exists V ∈ HallX(N) such that V N = V G .
By Λ we denote the set of all minimal normal subgroups of the group G lying

in N . By the assumption,

N =
∏

M∈Λ

M,

where the product is direct. For each M ∈ Λ, we choose, according to 4◦), a sub-
group VM ∈ HallX(M) so that V M

M = V G
M . Let

V = 〈VM | M ∈ Λ〉.

Then V ∈ HallX(N). Consider any g ∈ G. Any M ∈ Λ contains an element xM

such that V g
M = V xM

M . We set

x =
∏

M∈Λ

xM .
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It is clear that x ∈ N and V x
M = V xM

M = V g
M for any M ∈ Λ. Therefore,

V g = 〈V g
M | M ∈ Λ〉 = 〈V x

M | M ∈ Λ〉 = V x.

This proves assertion 5◦).

6◦) The groups NA(V ) and NG(V ) are X-separable.

Consider the normal series

NG(V ) D NA(V ) D NN (V ) D V D 1

and the sections of this series. The section NG(V )/NA(V ) is isomorphic to the
subgroup NG(V )A/A in the X

′-group G/A and, therefore, is also an X
′-group.

Similarly

NA(V )/NN (V ) ∼= NA(V )N/N 6 A/N = KN/N ∼= K/(K ∩N),

which gives NA(V )/NN (V ) ∈ X. Since V ∈ HallX(N), we have NN (V )/V ∈ X
′.

Finally, V ∈ X. This proves 6◦).
Now the required proposition follows from 5◦) and 6◦). Using 5◦), we see that

V A = V N . By Lemma 2, there exists L ∈ HallX(A) such that V = L ∩ N . Let
us show that L is as claimed in the proposition. It suffices to prove the inclusion
G 6 ANG(L). It is clear that L 6 NA(V ), that is, L is an X-Hall subgroup
of the X-separable normal subgroup NA(V ) of the group NG(V ). From conjugacy of
the X-Hall subgroups in X-separable groups, we have

LNG(V ) = LNA(V ), which implies NG(V ) 6 NA(V )NG(L).

Now an appeal to 5◦) shows that

G = NNG(V ) 6 NNA(V )NG(L) 6 ANG(L),

which completes the proof of Proposition 2.

It seems that by using [24], Theorem 3.1 (see also [25], Theorem 2), Proposition 2
might be strengthened to the hollowing hypothetical result: if G ∈ EX and A E G,
then G = ANG(H) for some H ∈ HallX(A). If X is the class of π-groups, this
result is known (see [12], Corollary 3.7).

§ 4. On simple groups with nine conjugacy classes of X-Hall subgroups

Proposition 3. Let X be a complete class of finite groups, S be a nonabelian

simple group and hX(S) = 9. Then S /∈ MX .

Proof. Assume that S ∈ MX. Let π = π(X). In view of Lemma 9, we can assume
that

S = PSp2n(q)
∼= PSp(V ) and π(X) ∩ π(S) ⊆ π(q2 − 1) ⊆ π(SL2(q)).

Any X-Hall subgroup of the group PSp2n(q) is contained in the stabilizer M of
a decomposition of the associated space V in the orthogonal sum

V = V1 ⊥ · · · ⊥ Vn
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of nondegenerate isometric subspaces of dimension 2. There exists a subgroup
A E M such that A = L1 . . . Ln, where Li

∼= Sp(Vi) ∼= Sp2(q)
∼= SL2(q), [Li, Lj ] = 1,

i, j = 1, . . . , n, i 6= j, and M/A ∼= Symn.
One of the following two cases holds.
(1) π(X) ∩ π(S) = π(X) ∩ π(SL2(q)) = {2, 3} and n ∈ {5, 7}. In addition,

the X-Hall subgroups of any group Li
∼= SL2(q) are, precisely, the generalized

quaternion groups of order 48 and groups of the form 2. Sym4.
(2) π(X)∩π(S) = π(X)∩π(SL2(q)) = {2, 3, 5} and n = 7. In addition, the X-Hall

subgroups in any Li
∼= SL2(q) are, precisely, the generalized quaternion groups of

order 120 and groups of the form 2.Alt5; any X-Hall subgroup in M/A ∼= Sym7 is
isomorphic to Sym6.

In each of these cases, we choose in S a subgroup U as follows.
Consider case (1). The group S contains a subgroup of the form

Sp6(q) ◦ Sp2(n−3)(q)

which stabilizes in S a nondegenerate subspace of dimension 6 and its orthogonal
complement, and hence, contains a subgroup isomorphic to Sp6(q). For any ε ∈
{+,−}, this subgroup contains a subgroup7 GLε

3(q).2 (see [18], Table 8.28); here
ε can be chosen so that the number q−ε1 would be divisible by 3. With this choice
of ε, in view of [18], Tables 8.3, 8.5, we can choose a {2, 3}-subgroup

U := 31+2
+ : Q8

in the subgroup SLε
3(q) 6 GLε

3(q).2. By solvability, U ∈ X. Since S ∈ MX, we have
U 6 H for some H ∈ HallX(S). Proceeding as above, we choose a subgroup M and
a normal subgroup A in M such that H 6 M . Consider the canonical epimorphism

: M → M/A.

We have U 6 H 6 M ∼= Symn, where n ∈ {5, 7}. On the other hand, H ∼=
H/(H ∩ A) and U ∼= U(H ∩ A)/(H ∩ A). We choose in H ∩ A the characteristic
subgroups B, C, and D defined by

B := O2(H ∩ A), C/B := O3((H ∩A)/B) and D/C := O2((H ∩ A)/C).

By the choice, B 6 C 6 D. From Lemma 2 it follows that the subgroup H ∩ A is
generated by pairwise permutational X-Hall subgroups of factors Li, each of which
is either a generalized quaternion {2, 3}-group, or is isomorphic to 2. Sym4. Now
it is clear that D = H ∩ A, and, therefore, U ∼= U/(U ∩D). Since O2(U) = 1, we
have

U ∩B = 1 and U ∼= UB/B.

Since, in each factor, the Sylow 3-subgroups forming the group H ∩ A are cyclic
groups of order 3, any Sylow 3-subgroup of the group H ∩ A which is isomorphic
to C/B is abelian, and its section

(UB/B) ∩ (C/B) = (U ∩ C)B/B ∼= U ∩ C

7Here, we follow the standard approach adopted for classical finite groups (see [18], for example)
by putting GL+

m
(q) = GLm(q), SL+

m
(q) = SLm(q), GL−

m
(q) = GUm(q) and SL−

n
(q) = SUn(q).
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is a normal abelian 3-subgroup of the group UB/B ∼= U . It follows that it is
contained in Z(O3(UB/B)), inasmuch as

UB/B ∼= 31+2
+ : Q8,

and Q8 acts irreducibly on the quotient group of the group 31+2
+ to its centre.

Therefore,

either UC/C ∼= U/(U ∩ C) ∼= 31+2
+ : Q8, or UC/C ∼= 32 : Q8.

Now, since O2(3
1+2
+ : Q8) = 1 and O2(3

2 : Q8) = 1, we find that

(UC/C) ∩D/C = 1 and U = UD/D ∼= UC/C.

But U (and, therefore, its subgroup Q8) is isomorphic to a subgroup of the group
Symn for n ∈ {5, 7}. At the same time, it is quite clear that the group Q8 has not
faithful permutation representations of degree < 8. A contradiction.

Consider case (2). Proceeding with the group S = PSp14(q) as in case (1),
we find a subgroup isomorphic to Sp10(q). Since 5 divides q2 − 1, we choose ε ∈
{+,−} so that 5 would divide q − ε1. The group Sp10(q), and hence, the group S,
contains a subgroup GLε

5(q).2 (see [18], Table 8.64), which, in turn, contains SLε
5(q)

as a subgroup. Further, SLε
5(q) contains a subgroup

U := 51+2
+ . Sp2(5),

see [18], Tables 8.18 and 8.20. Moreover, since Sp2(5)
∼= 2.Alt5, we have U ∈ X.

Next, since S ∈ MX, we see that U 6 H for some H ∈ HallX(S). Proceeding
as above, we choose a subgroup M and in it a normal subgroup A so as to have
H 6 M . Let

: M → M/A

be the canonical epimorphism. Then U 6 H 6 M ∼= Sym7. Therefore, |U |5 6 5.
From the structure of the group U any homomorphism image of the group U
whose order is not divisible by 52 is an image of the group Sp2(5)

∼= SL2(5).
Hence the extra special subgroup 51+2

+ of the group U should lie in the kernel of
the homomorphism , and hence, in U ∩ A. But the Sylow 5-subgroups of the
group A are abelian (in each factor Li the order of the Sylow 5-subgroup is 5).
This contradiction proves Proposition 3.

§ 5. Proof of Theorem 1 and its corollaries

Proof of Theorem 1. Assume on the contrary that there exists a group G with the
following properties:

(a) G has a normal subgroup N such that kX(N) > 1, but the reduction
X-theorem holds for the pair (G,N), that is, kX(G) = kX(G), where bar

: G → G/N

denotes the canonical epimorphism;
(b) the order of G is smallest among the groups with property (a).
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Recall (see § 1.2) that the reduction X-theorem for the pair (G,N) implies the
following properties:

1◦) if K ∈ mX(G), then K ∈ mX(G);
2◦) if for K,L ∈ mX(G), the subgroups K and L are conjugate in G (for example,

are equal), then K and L are conjugate in G.
Note that if M 6= 1 is a normal subgroup of G, M 6 N , then, since G/N is

a homomorphic image of the group G/M , we have

kX(G) = kX(G/N) 6 kX(G/M) 6 kX(G).

As a result, we get the reduction X-theorem for the pairs (G/M,N/M) and (G,M).
By (b) and since |G/M | < |G|, we have kX(N/M) = 1. Hence if kX(M) = 1, then
by Lemma 3

kX(N) = kX(N/M) = 1.

Therefore, it can be assumed that
3◦) N is a minimal normal subgroup of the group G, and N is nonabelian,

because kX(N)> 1. Therefore, according to [19], Ch. 2, Corollary 3 to Theo-
rem 4.14,

N = S1 × · · · × Sn

for some nonabelian simple subgroups S1, . . . , Sn conjugate in G. Let S be one of
the Si’s.

We will obtain a contradiction by examining the action of the group AutG(S)
on the set

∆ := HallX(S)/S

of the conjugacy classes of X-Hall subgroups of the group S. By Lemma 8,
4◦) |∆| = hX(S) ∈ {0, 1, 2, 3, 4, 9}.
Let us exclude all six possibilities. We will first verify that
5◦) hX(S) 6= 0.
To this end, we will show that
6◦) if K ∈ mX(G), then K ∩N ∈ HallX(N) and K ∈ HallX(KN).

As a result, HallX(N) 6= ∅ and hX(S) 6= 0, because

∅ 6= {H ∩ S | H ∈ HallX(N)} ⊆ HallX(S).

In addition, from the inclusion K ∩ N ∈ HallX(N) it will also follow that K ∈
HallX(KN), inasmuch as

|KN : K| =
|K||N |

|K ∩N |
: |K| = |N : (K ∩N)|.

We choose an arbitrary K ∈ mX(G), p ∈ π(X) and P ∈ Sylp(N). We have
P ∈ X. It suffices to prove that P is conjugate to a subgroup from K. We set

A := KN.

From Frattini’s argument (see [15], Ch. A, (6.3)) it follows that A = NA(P )N .
Hence

K = A = NA(P )
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and now, by Lemma 1, we have NA(P ) = U for some U ∈ mX(NA(P )). Since
U normalizes the X-subgroup P , we have P 6 U . We embed U into a maximal
X-subgroup L of the group G. By 1◦), we have L ∈ mX(G). In addition,

K = NA(P ) = U 6 L.

Similarly by 1◦) and since K ∈ mX(G), we have K ∈ mX(G). Now we have K = L,
and hence, using 2◦), we conclude that Lg = K for some g ∈ G. Hence

P g
6 Ug

6 Lg = K,

as claimed.
We note some other corollaries to 6◦). We assert that
7◦) any X-subgroup in G normalizes some member of HallX(N); in particular

8◦) N ∈ MX and S ∈ MX;
9◦) any X-subgroup in AutG(S) stabilizes some element from ∆.
Let us verify 7◦) and 8◦). If U is an X-subgroup of the group G, then U 6 K

for some K ∈ mX(G) and U normalizes K ∩ N ∈ HallX(N) in view of 6◦). This
proves 7◦). If here we take U ∈ mX(N), then U(K ∩ N) is an X-subgroup in N
containing U ∈ mX(N) and K ∩N ∈ HallX(N) ⊆ mX(N), and hence

U = U(K ∩N) = K ∩N ∈ HallX(N).

This shows that mX(N) = HallX(N). Therefore, N ∈ MX. From Lemma 2 it
follows that any normal subgroup of an MX-group is an MX-group. Hence S ∈ MX,
as claimed in 8◦).

Let us verify 9◦). We denote by

α : NG(S) → AutG(S)

the epimorphism which associates with each g ∈ NG(S) the automorphism of the
group S acting by the rule x 7→ xg for all x ∈ S. By Lemma 1, an arbitrary
X-subgroup T of the group AutG(S) has the form Uα, where U is some X-subgroup
of the group NG(S). Let t ∈ T , and let that t = gα for g ∈ U . Then xt = xgα

= xg

for all x ∈ S. By 7◦), the subgroup U normalizes some H ∈ HallX(N). Since U
also normalizes S, we have

(H ∩ S)t = (H ∩ S)g = H ∩ S.

Therefore, T leaves invariant the conjugacy class of X-Hall subgroups of the group S
that contains H ∩ S ∈ HallX(S).

10◦) hX(S) 6= 1.
Indeed, if hX(S) = 1, then S ∈ CX, and hence, by 8◦), we have

S ∈ CX ∩ MX = DX.

But then kX(S1) = · · · = kX(Sn) = 1 and kX(N) = 1 by Lemma 3, in contrast
to (a).

11◦) hX(S) 6= 9.
We have S ∈ MX. But if hX(S) = 9, then S /∈ MX by Proposition 3.



When is the search of relatively maximal subgroups reduced to quotient groups? 1119

12◦) NG(KN) ∈ CX and KN ∈ CX for any K ∈ mX(G).
Let K ∈ mX(G). We set

A := KN and B := NG(A).

Since A = K ∈ mX(G), we conclude that B/A ∼= NG(K)/K is a π′-group. There-
fore,

HallX(A) = HallX(B).

According to 6◦) we have K ∈ HallX(A). In particular, HallX(A) 6= ∅. Therefore,

A,B ∈ EX and hX(A) > hX(B) > 1.

Given an arbitrary L ∈ HallX(A), we will show that L and K are conjugate in B.
First, it is clear that A = KN = LN , and hence, K = L. Therefore,

L ∈ mX(G) and L ∩N ∈ HallX(N) ⊆ mX(N).

Hence L ∈ mX(G). According to 2◦), the equality K = L implies the conjugacy of
the subgroups K and L in G and, therefore, in B = NG(KN) = NG(LN). So, we
have shown that the group B acts transitively by conjugations on the nonempty
set HallX(A) = HallX(B). Therefore, NG(KN) = B ∈ CX.

From Proposition 2 it follows that there exists an L ∈ HallX(A) satisfying B =
NB(L)A. Next, since HallX(A) = HallX(B) and B ∈ CX, this equality holds for

any L ∈ HallX(A). From B ∈ CX it also follows that, for any L ∈ HallX(A), there
exist an element b ∈ B such that K = Lb. In addition, we have b = ga for some
g ∈ NB(L) and a ∈ A. Therefore,

K = Lb = Lga = La, where a ∈ A,

and which shows that KN = A ∈ CX, as claimed.
From 12◦) we can establish the following fact, which will be crucial in the proof

of the remaining cases:
13◦) if K ∈ mX(G), then AutK(S) stabilizes precisely one element from ∆.
Let K ∈ mX(G). That ∆ has a fixed point for AutK(S) follows from 9◦). Let

H ∈ HallX(S). We will prove 13◦) if we establish that the invariancy of the class
HS ∈ HallX(S)/S with respect to AutK(S) implies that H ∈ (K ∩ S)S . Let, as
before, A = KN . By Lemma 5, we have

HAutA(S) = (HS)AutK(S) = HS .

Now from Lemma 4 it follows that, for

M := 〈SA〉 = 〈SK〉,

there exist L ∈ HallX(KM) such that H = L ∩ S. In addition, |L| = |K|, and,
therefore, L ∈ HallX(A). But A = KN ∈ CX by 12◦), and hence, there exist u ∈ K
and v ∈ N such that L = Kuv = Kv. It is clear that if w ∈ S is the projection of v
to S (recall that, S is one of the direct factors S1, . . . , Sn whose product makes up
the group N), then

H = L ∩ S = Kv ∩ S = (K ∩ S)v = (K ∩ S)w ∈ (K ∩ S)S .

This proves 13◦).
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From 4◦), 5◦), 10◦) and 11◦) it follows that hX(S) ∈ {2, 3, 4}. We claim that
14◦) hX(S) 6= 2.

Indeed, we fix some K ∈ mX(G). According to 13◦), the group AutK(S) stabilizes
precisely one element from ∆. But for hX(S) = 2 the group AutK(S) also stabilizes
the remaining element. A contradiction.

By the above and in view of Lemma 8, it can be assumed that
15◦) hX(S) ∈ {3, 4} and 2, 3 ∈ π(X).
Now by Burnside’s theorem [15], § I.2, and since each solvable π(X)-group is

an X-group, we have
16◦) each {2, 3}-group is an X-group.
The theorem will be proved once we obtain a contradiction to 9◦) by showing

that
17◦) some X-subgroup in AutG(S) acts transitively on ∆.

The action of the group AutG(S) on the set ∆ induces the homomorphism

∗ : AutG(S) → Sym(∆), where Sym(∆) ∼=

{

Sym3 if hX(S) = 3,

Sym4 if hX(S) = 4.

Consider an arbitrary H ∈ HallX(S) and consider the class HS = {Hx | x ∈ S} ∈ ∆.
Let H 6 K for some K ∈ mX(G). Since the subgroup H = K∩S is invariant under
NK(S), the class HS is stabilized by the group AutK(S), and according to 11◦),
this group acts without fixed points on the set

Γ := ∆ \ {HS}

of the remaining two or three classes. Since

|Γ| = hX(S)− 1 =

{

2 if hX(S) = 3,

3 if hX(S) = 4,

it follows that the action of AutK(S) on Γ should be transitive. But then so is the
action of the stabilizer in AutG(S) of the point HS on Γ, because this stabilizer
contains the subgroup AutK(S). Therefore, AutG(S)

∗ is a transitive (and even
2-transitive) subgroup in Sym(∆), that is,

AutG(S)
∗ ∼=

{

Sym3 if hX(S) = 3,

Alt4 or Sym4 if hX(S) = 4.

In any case, AutG(S)
∗ is a {2, 3}-group and, therefore, is an X-group. By Lemma 1,

there exists an X-subgroup U of the group AutG(S) such that U∗ = AutG(S)
∗. This

subgroup U acts transitively on ∆, in contrast to 9◦).
This completes the proof of Theorem 1.

For proofs of Corollaries 1–3, see §§ 1.2, 1.3.

Proof of Corollary 4. It suffices to show that (i) ⇒ (ii). Let H ∈ mX(G) and
H 6 K 6 G. Let a subgroup N E G be such that kX(G/N) = kX(G). Then
N ∈ DX by Theorem 1. We claim that kX(K/(K ∩N)) = kX(K).
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Assume that N is minimal in G as a normal subgroup. Then N is a direct
product of its simple subgroups conjugate in G. From Theorem 2 and Lemma 2.28
in [4] we conclude that either N ∈ X, or, for π = π(X), any π-Hall subgroup
of the group N is solvable (in particular, lies in X) and N ∈ Dπ. In the first
case, the required result is clear. In the second case, from Lemma 2 it follows
that H ∩ N ∈ HallX(N) ⊆ Hallπ(N) and H ∩ N 6 K ∩ N 6 N . According to
Theorem 1.4, [16], K ∩N ∈ Dπ. Since any π-Hall subgroup from K ∩N lies in X,
we have K ∩N ∈ DX. As a result, kX(K/(K ∩N)) = kX(K) by Theorem 2.

The general case can be derived from that considered above by induction on |N |
after passing to the quotient group relative to the minimal normal subgroup of the
group G contained in N , and then applying Theorem 2. This proves the corollary.

Proof of Corollary 5. By definition of the relation ≡
X

, G1 ≡
X

G2 if and only if

the complete X-reductions of the groups G1 and G2 are isomorphic. Now all the
assertions in Corollary 5 are clear. This proves the corollary.
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