1. Use of Machine Learning Methods to Analyze Patterns of Brain Activity during Assessment of the Self and Others

    Knyazev, G. G., Savostyanov, A. N., Rudych, P. D. & Bocharov, A. V., Sept 2023, In: Neuroscience and Behavioral Physiology. 53, 7, p. 1210-1218 9 p.

    Research output: Contribution to journalArticlepeer-review

  2. Using Machine Learning Methods to Search for EEG and Genetic Markers of Depressive Disorder

    Zorina, K., Kriveckiy, A., Klemeshova, D., Bocharov, A. & Karmanov, V., 8 Aug 2025, International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM. IEEE Computer Society, p. 1790-1793 4 p. (International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  3. Using PCA Machine Learning Approach Based on Psychological Questionnaires and Spectral Characteristics of the EEG to Separate the Healthy Participants and Participants with Major Depressive Disorder

    Merkulova, E. A., Kozulin, I. A., Savostyanov, A. N., Bocharov, A. V. & Privodnova, E. Y., 2023, 24th IEEE International Conference of Young Professionals in Electron Devices and Materials, EDM 2023; Novosibirsk; Russian Federation; 29 June 2023 до 3 July 2023. Institute of Electrical and Electronics Engineers Inc., p. 1740-1745 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  4. Using PCA Machine Learning Approach Based on Psychological Questionnaires and Spectral Characteristics of the EEG to Separate the Healthy Participants and Participants with Major Depressive Disorder

    Merkulova, E. A., Kozulin, I. A., Savostyanov, A. N., Bocharov, A. V. & Privodnova, E. Y., 29 Jun 2023, p. 1740-1745. 6 p.

    Research output: Contribution to conferencePaperpeer-review

  5. Verification Method of Hypothesis Based on Different EEG Data Statistical Processing

    Merkulova, E. A., Ladonovskaya, K. V., Bocharov, A. V. & Kozulin, I. A., 2022, Proceedings of the 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials, EDM 2022. IEEE Computer Society, p. 525-529 5 p. (International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM; vol. 2022-June).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  6. Анализ активности мозга по данным функциональной МРТ при эмоциональной оценке себя и других людей

    Knyazev, G. G., Bocharov, A. V., Savostyanov, A. N., Levin, E. A. & Rudych, P. D., 2020, In: Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I.P. Pavlova. 70, 1, p. 31-39 9 p.

    Research output: Contribution to journalArticlepeer-review

  7. Взаимосвязь ЭЭГ-реакций в условиях распознавания эмоциональной лексики у якутов с аллельными полиморфизмами транспортера серотонина

    Savostyanov, A. N., Saprygin, A. E., Bocharov, A. V., Ayusheeva, T., Meshkova, V. A., Bazovkina, D. V., Karpova, A. G., Borsova, N. V. & Aftanas, L. I., 2017, In: Yakut medical journal. 3, p. 52-55 4 p.

    Research output: Contribution to journalArticlepeer-review

  8. Влияние стресса и генетической предрасположенности на симптомы психопатологии

    Knyazev, G. G., Bocharov, A. Y., Savostyanov, A. N. & Proshina, E. A., 2022, In: Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I.P. Pavlova. 72, 4, p. 471-486 16 p., 3.

    Research output: Contribution to journalArticlepeer-review

  9. Выраженность депрессивной симптоматики и осцилляторные ответы на эмоциональные выражения лиц

    Knyazev, G. G., Bocharov, A. V. & Savostyanov, A. N., 1 May 2016, In: Fiziologiia cheloveka. 42, 3, p. 103-109 7 p.

    Research output: Contribution to journalArticlepeer-review

  10. Депрессивная симптоматика и активность осцилляторных сетей в покое

    Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., Saprygin, A. E. & Tamozhnikov, S. S., 1 May 2015, In: Zhurnal vyssheĭ nervnoĭ deiatelnosti imeni I P Pavlova. 65, 3, p. 344-351 8 p.

    Research output: Contribution to journalArticlepeer-review

ID: 3457005