1. 2024
  2. Wavelet-Based Machine Learning Algorithms for Photoacoustic Gas Sensing

    Kozmin, A., Erushin, E., Miroshnichenko, I., Kostyukova, N., Boyko, A. & Redyuk, A., Jun 2024, In: Optics. 5, 2, p. 207-222 16 p.

    Research output: Contribution to journalArticlepeer-review

  3. Dispersive Fourier Transform Spectrometer Based on Mode-Locked Er-Doped Fiber Laser for Ammonia Sensing

    Апрелов, Н. А., Ватник, И. Д., Харенко, Д. С. & Редюк, А. А., Jan 2024, In: Photonics. 11, 1, 45.

    Research output: Contribution to journalArticlepeer-review

  4. Interpretation models for data of metal-oxide gas sensors based on machine learning methods

    Kozmin, A. D. & Redyuk, A. A., 2024, In: Journal of Computational Technologies. 29, 4, p. 4-23 20 p.

    Research output: Contribution to journalArticlepeer-review

  5. 2023
  6. Enhancing long-term stability of photoacoustic gas sensor using an extremum-seeking control algorithm

    Bednyakova, A., Erushin, E., Miroshnichenko, I., Kostyukova, N., Boyko, A. & Redyuk, A., Sept 2023, In: Infrared Physics and Technology. 133, 6 p., 104821.

    Research output: Contribution to journalArticlepeer-review

  7. Scheme of Signal Processing in a Multimode Communication Receiver Based on Convolutional Neural Networks

    Sidelnikov, O. S., Redyuk, A. A. & Fedoruk, M. P., Sept 2023, In: Bulletin of the Lebedev Physics Institute. 50, p. S336-S342 7 p.

    Research output: Contribution to journalArticlepeer-review

  8. 2022
  9. 2021
  10. Application of complex fully connected neural networks to compensate for nonlinearity in fibre-optic communication lines with polarisation division multiplexing

    Bogdanov, S. A., Sidelnikov, O. S. & Redyuk, A. A., Dec 2021, In: Quantum Electronics. 51, 12, p. 1076-1080 5 p., 5.

    Research output: Contribution to journalArticlepeer-review

Previous 1 2 3 4 5 Next

ID: 3454510