1. DNS of starting turbulent jets with variable density

    Ivashchenko, V. A. & Mullyadzhanov, R. I., 28 Nov 2019, In: Journal of Physics: Conference Series. 1382, 1, 4 p., 012012.

    Research output: Contribution to journalConference articlepeer-review

  2. DNS of round turbulent jets with variable density

    Ivashchenko, V. A., Abdurakipov, S. S. & Mullyadzhanov, R. I., 2 Nov 2018, 19th International Conference on the Methods of Aerophysical Research, ICMAR 2018. Fomin (ed.). American Institute of Physics Inc., Vol. 2027. 5 p. 040027. (AIP Conference Proceedings; vol. 2027).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  3. DNS of heat transfer of the flow over a cylinder at Re = 200 and 1000

    Palkin, E., Ryzhenkov, V. & Mullyadzhanov, R., 28 Nov 2019, In: Journal of Physics: Conference Series. 1382, 1, 5 p., 012028.

    Research output: Contribution to journalConference articlepeer-review

  4. Direct scattering transform of large wave packets

    Mullyadzhanov, R. & Gelash, A., 1 Nov 2019, In: Optics Letters. 44, 21, p. 5298-5301 4 p.

    Research output: Contribution to journalArticlepeer-review

  5. Direct numerical simulations of the turbulent annular jet with different diameter ratio

    Ryzhenkov, V. & Mullyadzhanov, R., 28 Nov 2018, In: Journal of Physics: Conference Series. 1105, 1, 6 p., 012007.

    Research output: Contribution to journalConference articlepeer-review

  6. Direct Numerical Simulation of the Turbulent Flow Laminarization in a Pipe at Re = 5000

    Zaripov, D. I., Ivashchenko, V. A., Panteleev, S. A., Luk’yanov, A. A. & Mullyadzhanov, R. I., 2023, In: Russian Aeronautics. 66, 4, p. 723-730 8 p.

    Research output: Contribution to journalArticlepeer-review

  7. Direct Numerical Simulation of the Peripheral and Internal Configurations of a Model Assembly of Fuel Elements

    Ivashchenko, V. A., Lobanov, P. D., Yavorsky, N. I., Tokarev, M. P. & Mullyadzhanov, R. I., Jun 2023, In: Journal of Applied and Industrial Mathematics. 17, 2, p. 320-325 6 p.

    Research output: Contribution to journalArticlepeer-review

  8. Deep Reinforcement Learning Control of Cylinder Flow Using Rotary Oscillations at Low Reynolds Number

    Tokarev, M., Palkin, E. & Mullyadzhanov, R., 2 Nov 2020, In: Energies. 13, 22, 11 p., 5920.

    Research output: Contribution to journalArticlepeer-review

  9. Deep learning segmentation to analyze bubble dynamics and heat transfer during boiling at various pressures

    Malakhov, I., Seredkin, A., Chernyavskiy, A., Serdyukov, V., Mullyadzanov, R. & Surtaev, A., May 2023, In: International Journal of Multiphase Flow. 162, 104402.

    Research output: Contribution to journalArticlepeer-review

  10. Data-driven turbulence modeling for fluid flow and heat transfer in peripheral subchannels of a rod bundle

    Li, H., Yakovenko, S., Ivashchenko, V., Lukyanov, A., Mullyadzhanov, R. & Tokarev, M., 2024, In: Physics of Fluids. 36, 2

    Research output: Contribution to journalArticlepeer-review

ID: 3451061