1. Dual function of HPF1 in the modulation of PARP1 and PARP2 activities

    Kurgina, T. A., Moor, N. A., Kutuzov, M. M., Naumenko, K. N., Ukraintsev, A. A. & Lavrik, O. I., Dec 2021, In: Communications Biology. 4, 1, 1259.

    Research output: Contribution to journalArticlepeer-review

  2. Dual DNA topoisomerase 1 and tyrosyl-DNA phosphodiesterase 1 inhibition for improved anticancer activity

    Zakharenko, A., Dyrkheeva, N. & Lavrik, O., 1 Jul 2019, In: Medicinal Research Reviews. 39, 4, p. 1427-1441 15 p.

    Research output: Contribution to journalReview articlepeer-review

  3. Double-Stranded DNA Fragments Bearing Unrepairable Lesions and Their Internalization into Mouse Krebs-2 Carcinoma Cells

    Dolgova, E. V., Evdokimov, A. N., Proskurina, A. S., Efremov, Y. R., Bayborodin, S. I., Potter, E. A., Popov, A. A., Petruseva, I. O., Lavrik, O. I. & Bogachev, S. S., 1 Oct 2019, In: Nucleic Acid Therapeutics. 29, 5, p. 278-290 13 p.

    Research output: Contribution to journalArticlepeer-review

  4. Double oxalates of Rh(III) with Ni(II) and Co(II) – Effective precursors of nanoalloys for hydrocarbons steam reforming

    Zadesenets, A. V., Garkul, I. A., Filatov, E. Y., Sukhikh, A. S., Plusnin, P. E., Urlukov, A. S., Uskov, S. I., Potemkin, D. I. & Korenev, S. V., 12 Jul 2023, In: International Journal of Hydrogen Energy. 48, 59, p. 22428-22438 11 p.

    Research output: Contribution to journalArticlepeer-review

  5. Double oxalates of Rh(III) with Cu(II) and Zn(II) – Effective precursors of nanoalloys for hydrogen production by steam reforming of propane

    Garkul, I. A., Zadesenets, A. V., Filatov, E. Y., Байдина, И. А., Plusnin, P. E., Urlukov, A. S., Potemkin, D. I. & Korenev, S. V., 11 Sept 2024, In: International Journal of Hydrogen Energy. 82, p. 611-623 13 p.

    Research output: Contribution to journalArticlepeer-review

  6. Do Sputnik V Vaccine-Induced Antibodies Protect Against Seasonal Coronaviruses? Case Study

    Koryukov, M., Kechin, A., Shamovskaya, D., Timofeeva, A. & Filipenko, M., Mar 2022, In: Viral Immunology. 35, 2, p. 138-141 4 p.

    Research output: Contribution to journalArticlepeer-review

  7. DNA Repair Enzymes as Promising Targets in Oncotherapy

    Zakharenko, A. L., Lebedeva, N. A. & Lavrik, O. I., 1 Jan 2018, In: Russian Journal of Bioorganic Chemistry. 44, 1, p. 1-18 18 p.

    Research output: Contribution to journalReview articlepeer-review

  8. DNA Probes for Analysis of the Activity of Key Enzymes of the Base Excision DNA Repair Pathway in Human Cells

    Alekseeva, I. V., Kuznetsova, A. A., Kladova, O. A., Shender, V. O., Schneider, P. V., Fedorova, O. S. & Kuznetsov, N. A., Apr 2023, In: Molecular Biology. 57, 2, p. 299-311 13 p.

    Research output: Contribution to journalArticlepeer-review

  9. DNA lesions against genome editing: how Cas9 cleaves the substrates with damages

    Vokhtantsev, I. P., Endutkin, A. V., Kulishova, L. M. & Zharkov, O., Jul 2019, In: FEBS Open Bio. 9, p. 397-397 1 p.

    Research output: Contribution to journalMeeting Abstractpeer-review

  10. DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus

    Endutkin, A. V., Panferova, E. P., Barmatov, A. E. & Zharkov, D. O., Sept 2021, In: DNA Repair. 105, p. 103160 103160.

    Research output: Contribution to journalArticlepeer-review

ID: 3083609