1. The Wielandt–Hartley theorem for submaximal X -subgroups

    Revin, D., Skresanov, S. & Vasil’ev, A., 1 Sept 2020, In: Monatshefte fur Mathematik. 193, 1, p. 143-155 13 p.

    Research output: Contribution to journalArticlepeer-review

  2. Use of Computer Methods for Analyzing Brain Signals to Assess the Success of Adaptation of Labor Migrants to Extreme Climate Conditions

    Milakhina, N., Karpova, A., Astakhova, T. & Savostyanov, A., 30 Jun 2021, 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials, EDM 2021 - Proceedings. IEEE Computer Society, p. 577-581 5 p. 9507608. (International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM; vol. 2021-June).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  3. Use of Machine Learning Methods to Analyze Patterns of Brain Activity during Assessment of the Self and Others

    Knyazev, G. G., Savostyanov, A. N., Rudych, P. D. & Bocharov, A. V., Sept 2023, In: Neuroscience and Behavioral Physiology. 53, 7, p. 1210-1218 9 p.

    Research output: Contribution to journalArticlepeer-review

  4. Using Few-Shot Learning Techniques for Named Entity Recognition and Relation Extraction

    Bondarenko, I., Berezin, S., Pauls, A., Batura, T., Rubtsova, Y. & Tuchinov, B., 14 Nov 2020, Proceedings - 2020 Science and Artificial Intelligence Conference, S.A.I.ence 2020. Novosibirsk, Russia: Institute of Electrical and Electronics Engineers Inc., p. 58-65 8 p. 9303192. (Proceedings - 2020 Science and Artificial Intelligence Conference, S.A.I.ence 2020).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  5. Using PCA Machine Learning Approach Based on Psychological Questionnaires and Spectral Characteristics of the EEG to Separate the Healthy Participants and Participants with Major Depressive Disorder

    Merkulova, E. A., Kozulin, I. A., Savostyanov, A. N., Bocharov, A. V. & Privodnova, E. Y., 2023, 24th IEEE International Conference of Young Professionals in Electron Devices and Materials, EDM 2023; Novosibirsk; Russian Federation; 29 June 2023 до 3 July 2023. Institute of Electrical and Electronics Engineers Inc., p. 1740-1745 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  6. Validation of the Russian Version of the Broad Autism Phenotype Questionnaire in a Russian Speaking Sample of Neurotypical Subjects

    Kuleshov, D., Vlasov, M. & Vergunov, E., 8 Aug 2025, International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM. IEEE Computer Society, p. 1770-1773 4 p. (International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  7. Verification Method of Hypothesis Based on Different EEG Data Statistical Processing

    Merkulova, E. A., Ladonovskaya, K. V., Bocharov, A. V. & Kozulin, I. A., 2022, Proceedings of the 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials, EDM 2022. IEEE Computer Society, p. 525-529 5 p. (International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM; vol. 2022-June).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  8. Wav2vec2 Without Attention: Do You Need Hopfield Networks for Self-Supervised Learning of Speech Representations?

    Grebenkin, D. & Bondarenko, I., Oct 2024, In: Journal of Mathematical Sciences (United States). 285, 1, p. 28-35 8 p.

    Research output: Contribution to journalArticlepeer-review

  9. Will and self-regulation: An interdisciplinary research experience

    Savostyanov, A. N., Stepanova, V. V. & Tolstykh, N. N., 1 Jan 2019, In: Cultural-Historical Psychology. 15, 3, p. 91-104 14 p.

    Research output: Contribution to journalArticlepeer-review

ID: 3085523