1. Tarskian consequence relations bilaterall: some familiar notions

    Drobyshevich, S., Oct 2021, In: Synthese. 198, Suppl 22, p. 5213-5240 28 p.

    Research output: Contribution to journalArticlepeer-review

  2. The 2-Closure of a 32 -Transitive Group in Polynomial Time

    Vasil’ev, A. V. & Churikov, D. V., 1 Mar 2019, In: Siberian Mathematical Journal. 60, 2, p. 279-290 12 p.

    Research output: Contribution to journalArticlepeer-review

  3. The 3-closure of a solvable permutation group is solvable

    O'Brien, E. A., Ponomarenko, I., Vasil'ev, A. V. & Vdovin, E., 1 Oct 2022, In: Journal of Algebra. 607, p. 618-637 20 p.

    Research output: Contribution to journalArticlepeer-review

  4. The Alperin Theorem for Periodic Groups with a Finite Sylow 2-Subgroup

    Liu, A. M., Guo, W., Li, B. J., Lytkina, D. V. & Mazurov, V. D., Jul 2024, In: Siberian Mathematical Journal. 65, 4, p. 804-809 6 p., 7.

    Research output: Contribution to journalArticlepeer-review

  5. The behavior of π-submaximal subgroups under homomorphisms with π-separable kernels

    Revin, D. O. & Zavarnitsine, A. V., 2020, In: Siberian Electronic Mathematical Reports. 17, p. 1155-1164 10 p.

    Research output: Contribution to journalArticlepeer-review

  6. The Cayley isomorphism property for the group

    Ryabov, G., 2020, In: Communications in Algebra. 49, 4, p. 1788-1804 17 p.

    Research output: Contribution to journalArticlepeer-review

  7. The Cayley isomorphism property for the group C5 2 × Cp

    Ryabov, G., 2020, In: Ars Mathematica Contemporanea. 19, 2, p. 277-295 19 p.

    Research output: Contribution to journalArticlepeer-review

  8. The Closures of Wreath Products in Product Action

    Vasil’ev, A. V. & Ponomarenko, I. N., Jul 2021, In: Algebra and Logic. 60, 3, p. 188-195 8 p.

    Research output: Contribution to journalArticlepeer-review

  9. The graph of atomic divisors and recognition of finite simple groups

    Buturlakin, A. A. & Vasil'ev, A. V., 1 Nov 2019, In: Journal of Algebra. 537, p. 478-502 25 p.

    Research output: Contribution to journalArticlepeer-review

  10. The group Cp4×Cq is a DCI-group

    Kovács, I. & Ryabov, G., Mar 2022, In: Discrete Mathematics. 345, 3, 112705.

    Research output: Contribution to journalArticlepeer-review

ID: 3082938