1. Modelling of the arteriovenous malformation embolization optimal scenario: AVM embolization optimal scenario

    Cherevko, A. A., Gologush, T. S., Petrenko, I. A., Ostapenko, V. V. & Panarin, V. A., 1 Jul 2020, In: Royal Society Open Science. 7, 7, 16 p., 191992.

    Research output: Contribution to journalArticlepeer-review

  2. Modelling of polymeric fluid flow taking into account the electromagnetic impacts and the heat dissipation*

    Blokhin, A., Kruglova, E. & Semisalov, B., 1 Jan 2019, In: WSEAS Transactions on Systems and Control. 14, p. 169-182 14 p., 21.

    Research output: Contribution to journalArticlepeer-review

  3. Modeling of transient studies on the reaction kinetics over catalysts with lattice oxygen mobility: Dry reforming of CH4 over a Pt/PrCeZrO catalyst

    Mirodatos, C., van Veen, A. C., Pokrovskaya, S. A., Chumakova, N. A., Sazonova, N. N. & Sadykov, V. A., 1 Jul 2018, In: Chemical Engineering Journal. 343, p. 530-543 14 p.

    Research output: Contribution to journalArticlepeer-review

  4. MHD model of incompressible polymeric fluid. Linear instability of the resting state

    Blokhin, A. M. & Tkachev, D. L., 2021, In: Complex Variables and Elliptic Equations. 66, 6-7, p. 929-944 16 p.

    Research output: Contribution to journalArticlepeer-review

  5. MHD model of an incompressible polymeric fluid. Stability of the poiseuille type flow

    Blokhin, A. M. & Tkachev, D. L., 3 Apr 2020, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy: A Liber Amicorum to Professor Godunov. Springer International Publishing AG, p. 45-51 7 p.

    Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

  6. MHD model of an incompressible polymeric fluid. Linear instability of the resting state

    Blokhin, A. & Tkachev, D., 20 Nov 2020, In: Journal of Physics: Conference Series. 1666, 1, 012007.

    Research output: Contribution to journalConference articlepeer-review

  7. Mathematical Simulation of the Distribution of the Electron Beam Current during Pulsed Heating of a Metal Target

    Lazareva, G. G., Popov, V. A., Arakcheev, A. S., Burdakov, A. V., Schwab, I. V., Vaskevich, V. L., Maksimova, A. G., Ivashin, N. E. & Oksogoeva, I. P., Apr 2021, In: Journal of Applied and Industrial Mathematics. 15, 2, p. 292-301 10 p.

    Research output: Contribution to journalArticlepeer-review

  8. Mathematical modelling of filtration and catalytic oxidation of diesel particulates in filter porous media

    Vernikovskaya, N. V., Pavlova, T. L., Chumakova, N. A. & Noskov, A. S., 1 Jan 2017, Mathematical Research Summaries. Nova Science Publishers, Inc., Vol. 2. p. 95-96 2 p.

    Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

  9. Mathematical Modeling of Embolization of Arteriovenous Malformations with Overflows on the Basis of the Two-Phase Filtering

    Gologush, T. S., Ostapenko, V. V. & Cherevko, A. A., Sept 2021, In: Computational Mathematics and Mathematical Physics. 61, 9, p. 1546-1558 13 p., 13.

    Research output: Contribution to journalArticlepeer-review

  10. Mathematical and Numerical Models of the Central Regulatory Circuit of the Morphogenesis System of Drosophila

    Bukharina, T. A., Akinshin, A. A., Golubyatnikov, V. P. & Furman, D. P., 1 May 2020, In: Journal of Applied and Industrial Mathematics. 14, 2, p. 249-255 7 p.

    Research output: Contribution to journalArticlepeer-review

ID: 3088922