Strong seismic anisotropy is generally observed in subduction zones. Lattice preferred orientation (LPO) of olivine and elastically anisotropic hydrous minerals has been considered to be an important factor causing anomalous seismic anisotropy. For the first time, we report on measured LPOs of polycrystalline talc. The study comprises subduction-related ultrahigh-pressure metamorphic schists from the Makbal Complex in Kyrgyzstan-Kazakhstan and amphibolite-facies metasomatic schists from the Valla Field Block in Unst, Scotland. The here studied talc revealed a strong alignment of (001) planes (sub)parallel to the foliation and a girdle distribution of [100] axes and (010) poles (sub)parallel to the foliation. The LPOs of polycrystalline talc produced a significant P-wave anisotropy (AVp = 72%) and a high maximum S-wave anisotropy (max AVs = 24%). The results imply that the LPO of talc influence both the strong trench-parallel azimuthal anisotropy and positive/negative radial anisotropy of P-waves, and the trench-parallel seismic anisotropy of S-waves in subduction zones.

 

References

TitleLattice preferred orientation of talc and implications for seismic anisotropy in subduction zones
Degree of recognitionInternational
Media name/outletBlackPhysicists (twitter)
Media typeWeb
Country/TerritoryUnited States
Date01.03.2020
PersonsДмитрий Леонидович Конопелько

Description

Strong seismic anisotropy is generally observed in subduction zones. Lattice preferred orientation (LPO) of olivine and elastically anisotropic hydrous minerals has been considered to be an important factor causing anomalous seismic anisotropy. For the first time, we report on measured LPOs of polycrystalline talc. The study comprises subduction-related ultrahigh-pressure metamorphic schists from the Makbal Complex in Kyrgyzstan-Kazakhstan and amphibolite-facies metasomatic schists from the Valla Field Block in Unst, Scotland. The here studied talc revealed a strong alignment of (001) planes (sub)parallel to the foliation and a girdle distribution of [100] axes and (010) poles (sub)parallel to the foliation. The LPOs of polycrystalline talc produced a significant P-wave anisotropy (AVp = 72%) and a high maximum S-wave anisotropy (max AVs = 24%). The results imply that the LPO of talc influence both the strong trench-parallel azimuthal anisotropy and positive/negative radial anisotropy of P-waves, and the trench-parallel seismic anisotropy of S-waves in subduction zones.

 

Subject

Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones.

Period1 Mar 2020

ID: 27068952